B 7Y 1158 D)

N

' NASA TECHNICAL TRANSLATION NASA TT F-13,379

i METHOD OF SUCCESSIVE APPROXIMATIONS FOR THE INTEGRATION OF
"~ EQUATIONS OF A LAMINAR MULTI-COMPONENT BOUNDARY LAYER
’ WITH CHEMICAL REACTIONS INCLUDING IONIZATION .

G. A. “Firskiy

Translation of "Metod posledovatel'nykh priblizheniy
dlya integrirovaniya uraveneniy laminarnogo mnogokom=—
ponentnogo pogranichnogo sloya s khimicheskimi reak-
* tsiyami vklyuchaya reaktsii ionizatsii'. %% .z Paper
presented at the 2lst Internatiomal Astronautical
Congress, October 4 - 10, 1970, Constance, West Ger-
many, Moscow, Moscow State University, Institute of
Mechanics, Report, December, 1969, 52 pages.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546 NOVEMBER 1970



TABLE OF CONTENTS

ANNOTATION.
INTRODUCTION. Page
'~ 1., METHOD OF SUCCESSIVE APPROXIMATIONS 5
2. BASIC EQUATIONS AND BOUNDARY CONDITIONS FOR PROBLEMS IN

LAMINAR MULTI-COMPONENT BOUNDARY LAYER THEORY WITH HOMO-
GENEOUS AND HETEROGENEOUS REACTIONS FOR FLOW AROUND BODIES

WITH IMPERMEABLE AND THERMOCHEMICALLY DISINTEGRATING WALLS 14
2.1 Basic Concepts 14
2.2 Basic System of Equations for a Liminar Multi-Component
Boundary Layer 19
2.3 Boundary Conditions 36
3. PROBLEM ON A CHEMICALLY FROZEN FLOW IN A BOUNDARY LAYER
OVER AN -IMPERMEABLE SURFACE HAVING ARBITRARY CATALYTIC
CHARACTERISTICS 46
" 4., PROBLEM ON A CHEMICALLY FROZEN FLOW IN A BOUNDARY LAYER
OVER A THERMOCHEMICALLY DISINTEGRATING SURFACE POSSESSING
AN ARBITRARY CATALYTIC CHARACTER 52
5.  DETERMINATION OF THE EFFECTIVE ENTHALPY OF DISINTEGRATION
AND ITS EXACT STRUCTURAL FORMULA FOR A’CHEMICALLY FROZEN
FLOW IN A BOUNDARY LAYER 56
6. PROBLEM ON A CHEMICALLY BALANCED FLOW IN A BOUNDARY LAYER .
OVER A NONDISINTEGRATING SURFACE HAVING IDEAL CATALYTIC
CHARACTERISTICS 58
7. PROBLEM ON A CHEMICALLY BALANCED FLOW IN A BOUNDARY LAYER
OVER A DISINTEGRATING SURFACE POSSESSING AN IDEAL CATALYTIC
CHARACTER © 73
8. DERIVATION OF THE SYSTEM OF INTEGRO-DIFFERENTTAL EQUATIONS -
EQUIVALENT TO THE ORIGINAL SYSTEM OF BOUNDARY LAYER
DIFFERENTIAL EQUATIONS 74
9. INTEGRAL KARMAN EXPRESSIONS FOR A MULTI-COMPONENT BOUND-
ARY LAYER WITH REACTIONS 85
10. METHOD OF SUCCESSIVE APPROXIMATIONS FOR SOLVING LAMINAR
MULTI-COMPONENT BOUNDARY LAYER EQUATIONS WITH CHEMICAL i
__ _REACTIONS AND WITH IONIZATION REACTIONS ' 86 |
CONCLUSIONS | 96 |

REFERENGCES 98

ii




METHOD OF SUCCESSIVE APPROXIMATIONS FOR THE INTEGRATION OF
EQUATIONS OF A LAMINAR MULTI-COMPONENT BOUNDARY LAYER
WITH CHEMICAL REACTIONS INCLUDING IONIZATION

G. A. Tsirskiy

ABSTRACT. The two-dimensional stationary boundary
layer equations of an asymtotically thin boundary layer
are solved using the method of successive approximation.
A multi-component. gas with chemical reactions and ioni-
zation is considered. The method was tested and found
to be accurate to 1%.

ANNOTATION

This work represents further development and application of the method
of successive approximations [1l] to the integration of two-dimensional sta-
tionary equations of an asymptotically thin laminar boundary layer in a pre-
cise formulation for the general case of the motion of a multi-component

chemically reacting gas, including ionization.

One of the advantages of this method of successive approximations lies
particularly in the fact that the first approximations may be computed even
for complex problems of a hypersonic boundary layer in analytical form, and

‘will yield a géod approximate solution, whose accuracy may be computed using
this method by computing the successive approximations on an electronic com-
puter.

The convergence of this method was experimentally proven on simple prob-

* Numbers in the margin indicate the pagination in the original foreign text.



lems of boundary layer theory by computing a large number of iterations (up to
20), which showed that with a reasonable assignment of the zero approximation
the third to fourth approximations will yield a solution that differs no more

than 1% from the exact one.

The numerical results of the systematic computations according to this

method will be cited in a subsequent paper.

We have simultaneously given a strict rational formulation of the problem
on a chemically balanced boundary layer on an impermeable and thermochemically
disintegrated* wall, when the diffusion and thermodiffusion properties of the

components are different.

The basic equations for a partially ionized boundary layer without ex~-
ternal electromagnetic fields with reactions are reduced to a type which agree

in form with the equations for a chemically reacting mixture of neutral gases.

¥

*Translator's note: The term ablation is obviously designated here within the
context of re-entry physics being discussed. The author uses a different term,
however, and the translation follows his nomenclature and uses the word dis-
integration, instead of ablatiom.




INTRODUCTION

Different methods are used at the present time as the basic methods for /3
obtaining '"precise" solutions to the boundary layer equations. The method of
integral relationships proposed by A. A. Dorodnitsin [2] has also received

wide-spread distribution in the past few years.

-The use itself and the application of one of these methods to complex
physico-chemical boundary layers in the presence of a large number of compon~
ents, such as diffusion, unbalanced homogeneous and heterogeneous chemical
reactions and ionization reactions is always an independent and rather diffi-

cult problem which can often not be solved even on modern electronic computers.

Thus, on the one hand, the existence of complicated mathematical problems
in boundary layer theory, and on the other hand,tﬁe rather complex methods for
obtaining their precise solutions leads to the fact that in the operation of
institutes of design and departments of design serial computations of boundary
layers are carried out with correlation formulas, obtained either on the basis
of numerical computations of problems in a simplified physical formulation
or on the basis of approximate methods based primarily on the integral method

of Karman-Pohlhausen.

Significant advances in the creation of approximate methods in boundary
layer theory were attained in recent years in connection with the appearance
of the parameteric method of integrating universal equations of the laminar

boundary layer proposed by L. G. Loytsyanskiy [3].

With respect to the above in boundary layer theory, especially the hyper-
. sonic one, there is a necessity for creating sufficiently simple and reliable

methods of computation.



In this paper we propose a new variation of the numerical method for ob-
taining "exact" solutions to the boundary layer equations, i.e., the method of

successive approximations.

To some degree this method utilizes the method of analytical procedures
compiled in the many years that boundary layer theory has been in existence
combined with the numerical methods; and in this manner it permits us to ob-
tain visible results even in the complex problems of boundary layer theory.

The possibility of obtaining first approximations in analytical form from this .
. method (as a rule, no more than two in complex problems; the zero approxima-
tion is given) permits us to write the approximate solutions in explicit form,
the accuracy of which may be estimated using the method itself by computing

the remote approximations on an electronic computer which will simultaneously

give the "precise" solution to the problem as well.

At the present time the coﬁvergence of this method has not been proven.
There is "experimental" evidence of the convergencé of the method obtained
by direct computation on an electronic computer of a large number of approxi-'
mations (more than 20). Furthermore, the convergence of the method has been
evidenced on the simplest model linear problems when the solution can be

written in the common reéurrent form at each step of the iteratioms.

A rational formulation of the problem is very significant in the applica-"
tion of any method to the complex problems of boundary layer theory. There~
;fore, much attention must be paid to this side of the question before the
method of successive approximations is used. First of all the equations for
a partially ionized boundary layer with the respective exclusion of an electric
"field arising due to separation of the charged components during diffusion T
are redﬁced to the type which agrees in form with the ordinary boundary layer
equations for a mixture of neutral components. Secondly, by using the condi-
tions of chemical balance, the equations for.a chemically balanced boundary

layer are reduced to a new form suitable for actual solution.



We shall discuss in detail the boundary conditions both on an impermeable
surface and on a thermochemical wall. We shall cite the exact structural
formula for the effective enthalpy of the thermochemical disintegration of the

wall material of arbitrary chemical composition.
§ 1. METHOD OF SUCCESSIVE APPROXIMATIONS

Let us diécuss, using the method of successive approximations [1], the 14
simplest problem of integrating the boundary layer equations for the case of
an incompressible liquid. For sufficiently large Reynolds numbers the flow of

:a viscous liquid near a body is described by a Prandtl system of equations [4]

o (k) By (41eF)=0

U ,?.2“/:
o’ g.%'+ v/ ;/= Ue %’/ﬁ‘c + YV 3ys (1.1)

Here 0 < x < X, 0 <y < », In this case we must satisfy the conditions:

_ , ,
o' (=, 0/=Q/ v ‘r, o/"' iv (%), “ ﬁc’y/—’_l/f/w} when & —>°% (1.2)

To these conditions must be added the "initial" condition when x = 0. The

initial profile is given in problems on extension of the boundary layer:

w/(6y) = woly), Us >0 when' >0 (1.3)

and we must determine the flow in a boundary layer when x > 0.

In problems of plane-parallel symmetrical and axisymmetrical flows, we

have a physically obvious condition on the center line of the current passing

-« through the leading critical point

rog)mo.
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According to the physical sense of the problem, u’'(x,y) > 0 when x > 0, y > 0.

In this problem x is the coordinate'along the surface of the body, y is
that along the normal to the surface of the body, u', v' are projections of
the velocity vector, respectively,along the axes x and y, k = 0 with flow
around a two-dimensional profile, k = 1 with a flow around a body of revolu-
tion, r(x) is the radius of the cross section of the body of revolution, v is
the coefficient of kinematic viscosity, ue(x) is the given velocity of the non-
viscous flow on the body under consideration, vW(x) is a specified function
which gives the flow law along the surface of a body of a liquid having the
same properties as the oncoming flow. Reference [5] examines the questions
on existence and uniqueness of the solution of this problem using the method of .
.finite differences. Here we give the algorithm of the actual calculation of
the solution to the problem and furthermore mention the method for obtéining
.the approximate solutions. Apparently the method for'obtaining the solution
may itself serve as the basis for evidence of the existence and uniqueness of
the solution to the Problem (1.1) - (l.4). quever;this question is not ex- |

~amined in the present paper.
Let us introduce the flow function Y(x,y)
3a-vhh Gf=ulek,
and transform it into new independent variables
: LT e Ry ¢
x=x . = ——-———Z‘ (1.5)
S Y

. where 6(x) is as yet an arbitrary function of x.

If we represent the flow function in the form -

p(my) = ) f (%) (1.6)



then the velocity components are described by it as:

W L |
wilc,y) = Ue(x(z2), u )= 2/~
- V/.‘k Vi - 2L +d‘u@£ 2% (1.7)

and the momentum equation and the boundary conditions assume the following form

(e +dd’f)g—- v I8 B% = A gut) Gnlle vl % Ly |
 ufe o)=o (J“f}x/ =~y zK (1.8)
U(gp)=0  ulme) =4 - |

;Problem (1.8) can be further simplified if we introduce the coordinate s in-

‘stead of x

i -' w7 d ‘
ds = VUe(x)2™ (=) d e (1.9)

Then
s ,

B O SRR ) e s B

a(‘sz/=3‘f~ .a(oJO/*,P-i_*“ﬂ"‘/f/)‘%.a'-‘-’ x."‘ (1.10) /5

a
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If we integrate the previous equation over the variable n from n to « and use

" the known asymptotic function u(s,n) and f(s,n) at infinity [5]

-

w(s1)=1, S0, f(sy)=q-¥le), (-u)f=0 wimgT™

{

" we then find the following integro«differential equation

- IY [ (,, u,} Y’(.S' 7 ) + A(u) J v [/ -u)gf’ﬂ* g‘A(uﬂ*d}ﬂﬁWfl*oﬁ'“N (1.11)

7

where



wisg)= [ ulog!)dy’ A/u,)é,/fu/r ) of'z
fg)=Gp)fe ) a@) = J@-a9 o'

& ve - .| (1.12)
W) =Chl=- T pO)= *ﬁ’ds = ;

Incidentally let us mention that if we set § = 1 and n = 0 in (1.11) we then
find the integral Karman relationship in Prandtl form in the variables s, n,
on the basis of which the well-known approximate method of Karman-Pohlhausen

‘has been developed [3].

However,we shall discuss further the exact method for the solution based

‘on the use of the method of successive approximations.

For this let us integrate Equation (1.11) by n from O to n:

Uy)= An) 65 [0 Bg) + Con) 17+ D) ¥ 7

(1.13)
f %("3’2) =[ﬁ-u)f+d(u} Jdy! 5(57) Ja{z) a’7 -
Cou)- B Be sl e flrurdy

Now let us define the function 6§(s) with the specified function u(s,ﬁf

as the solution to the following ordinary differential equation

,d3’+[,a/s),/ff§m)) ‘/%}V";T]‘fz /(S ‘/’wdf(s) ﬂ(s,w) (1.15)

which follows from Equation (1.13) if we direct n to infinity in it and use

jthe boundary condition u(s, @) = 1, Now if we take. any solution to Equation
' (1.15) and substitute in (1.13), we find an integro-differential equation of
the type ' | ‘



wis,q)=Pisy, )

where the operator ¢ will always satisfy the conditions
P(so0)=0 . Pesest)=1 (1.16)

Therefore, to obtain the solution,we can arrange the following iteration pro-
' cess

el s neu®)
wll= & (5,9;4®) (1.17)

‘which is characteristic in that at each step of the iteration the following

jboundary conditions will always be satisfied

u™(50) =0 (1.18)
) u(ﬂ') (s oc) -'it
The operator .¢ is easy to construct. /6

. In the absence of a flow the solution to Equation (1.15), which satisfies
the condition 6(0) = 0, will be the function

(1.19)
d"(s}n«,b{%/:ﬁ’ds’)/z# (s’oo)ear/a (2[{.(9%’5”)0/.9’

YG)=p6) VMS,,‘,) ol L (1.20)
Substitution of it into (1.13) will give the functional equation in the .~
following explicit form '

u(sy)- ‘7"“2;“)
(1 21)

Pl yu)= Fesly * (PL8lag)- FE5LE btmTr e (sy)-

where




__ﬁi_ﬂ C(S =) joxp (z/:‘}’o/s’)b/z.# (-S “)oxf(j:‘/ds)df |

u? (5 o0 (1.22)

In the variables x, n the operator ¢ will be

¢(.’C,Z “)E ;T{%-L% * {ﬂ@/[B@Z)' .#(xoo) bz oo)_]-l' C/:r;z)w

| ) A ' & 1 (1.227)
- FLEL (ol gt [ 2L e/ Jebet)le

dbtle
where ./ﬁé?) “dee , the functioms A, B, C, G are given by Expressions

(1.14) and (1.20) in which s must be replaced by x.

The right-hand side of Equation (1.21), after substituting into it the
arbitrary integrable function which satisfies only the conditions in (1.18),
will always satisfy (1.16). Equation (1.21) may thérefore serve as a basis
for constructing the iterations according to the Algorithm (1.17) successively
for each cross section s = const (x - const), beginning from s = x = 0. 1If
the process converges to a certain limiting function a(s,y), then the solution

to the original Problem (1.1) - (1.2) will be the expression
w!(zy)= te () ‘zﬁ@W} (1.23)
~in which it is easy to verify direct substitution.

After making the necessary number of iterations, determined by the re-
quired accuracy, we can compute the friction on the wall by using Expression
(1.17) which will give

(5"(“) 0”3"/" d‘ (J) ( a/z)z-v "/"”‘”‘K[#(sw)?(s) ﬁ“’(“?" "7“’4(.:«)) *
é"(a.) é’(u) ;f—,ﬁ;;f,-]ﬁs,} @ 24)

RO -‘*‘T—‘“ S |

or in the variable x

10.




lw ' _
))w- Lo ~ L2
ot (T [ or B

& Flu-ote) 3 1o

(1.25) ;
where

o_?(u} :—“0/u/f-Au10"'Z’ ’ d'?l) {//- "/0/7 , /ﬁc/-a M'
For self-similar soiutions, i.e., when _[énc-s’". c-cgg@f , we will have

A (se0) = Alee) = T, 1 u/s'z)w(?) y), IS

5(&«) = B(ao) = comi" Pls)= .'fl /(- f—%;}- (1.26) |

‘Then these solutions are obtained by iteration of the simpler equation

u(7) ‘#ﬁx’) [ﬁfy) ﬁ/ )B( )]zmw‘ﬁiv)_» (1.27) ;

For example, the solution to the Blasius problem (m = 0) will be found com=-

pletely from the simple functional equation

wa A= [Linreacdldy o

- In the presence of a flow (ww' # 0) construction of the operator ¢ is more

complex. In this case Equation (1.15) is an Abel equation of second kind

ff=/ (s)d +/’(s)5+ﬁ(5)

%(3)= (Sﬂ) _ %(S)— ﬂ(‘; 00) “, f(S)‘fﬁ)#(.sn} _‘-_—(i?:i (1929) |

which by substitution of

11



L2 OIE, oo [l s, E= o llf ),

+ 1is brought to the form

Mgza ’%x/b_/"z//é‘/s)_ﬁ?g/ (1.30)

With a flow equal to zero (F = 0), the solution to this equation will be the
function Z + §(s)E (s), Where 6(s) is given by Expression (1.19).

In the general case Equation (1.30) is not integrated by quadratures.
Therefore,construction of the operator in the presence of a flow in explicit
form is impossible. In this case the iteration process can be constructed in
the following manner. 1In the actual data on the qualitative character of

; : : . 0
‘the velocity profile in a boundary layer we give the function u( ) (s,n),

which satisfies the conditions in (1.18). We then solve the ordinary differ-

ential Equation (1.15) with the initial condition 6(0) = 0. Then from (1.13)
(1)
(s

we find the profile u s7) in first approximation,and then the process is

. repeated.

Let us give the form for writing the above algorithm that is final and
more convenient for analytical and numerical iterations both in the variables

s and n,

(A,(S OO)

{W{s)d‘(ﬂ’ $}+[)§(S} me’ 50;) AT (s,00) JJMM %{%&7\“«(5){ (s)= W)

d()=0

- n)

+[f/3’”’ Y f;,f‘%—.@_’"'(sw)]% ()8 ‘"rs)‘ ;.

e vty oy s e

and in the vardiables x and n,

12

(1 31)"
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2 e

’ / B’(xoo) ) ,°°) N oo ,EL& £ P )
5 e+ [P i jm’ffoo) 1%, + %%éj%(‘”/ S~ gy ,60)=0

i ) ),
1t W) e b FlBTL sttt e[ Blig)- £ L) B ] (1.32)

j?(m . ‘4(,”(‘1, oq
( "
"’(me) —-a.rf;‘fﬁC”(a;f”)}d" /+[§)"'éz7/ ﬂ(,,,{z )9"” n)]Y" M)

P DU

After finding the necessary number of iterations we can compute the friction

onlthe wall from one of the formulas

"""”s)cfluez J‘f;;cf,; + [;9(5) 6’(‘1} ~iu) B2 ﬂ,«m(s o )+ 6"(a) J(u) 'Scmg,.))] Y1+ :
f +[1- 25z §(u) _]%(s)} T @y

- 5y s L N
‘ fm)(m)a _Pu‘ jzl")(‘qm)é‘”v(w) -+ [\ﬂfu‘z) (‘7{ qu}‘—;’mg——-!oo)) -+ .

00 [
TI é'(“') ;(“) .yC?""’;:;,ooj _7;,‘9) [j—ﬂa’”'(/s:u))ﬁ“l]%',(‘r) (1. 34) 18

Thus, in the presence of a flow it is necessary in each cross section s =
const (x = const) to have, generally speaking, a numerical solution to the
~auxiliary ordinary differential equation for the function §(s). However,in
the numerical realization of this process, the appearance of an.ordinéry differ-.

ential equation for the auxiliary function 8(s) does not complicate the com-

" putations very much.

COMMENTS
1. In any convergent method of successive approximations the choice of

- the initial approximation will determine the necessary number of iterations

" to obtain a specified accuracy. As the zero approximation we recommend using

13



(0)

the function u = uo(n), which depends only on n. Such a simple assignment
of the zero approximation is connected with that property of the boundary lay—.’ b
er equations which, with a sufficiently smooth function Ue(x), the solution

to Equation (1.10) will differ little from the quasi-self~similar solution ob= -
tained from Equation (1.10) if we delete the derivatives of s in it. With

(0)

such a choice u the dependence on s appears in the first approximation

through the function 6(s). In Reference [1] two different initial functioms P

(0)

were chosen: u0 =1 - exp(~n) and u = ¢(n). The second function brought ?

the iteration process to solution more rapidly.

2. It is important to mention that in this method of successive.approxi- ;
‘mations we expect convergence of the variables x, y or x, y [see (1.23)], but

‘not in the variables s, nor s, n, i.e.,

u:, (4 K ~ .
S )= 4(5y)

&'m, o (s,

V”—ow
‘&)n w™ ! .

The limit 5%, (s 7) may also not exist. The convergence of the
method was proven experimentally by direct computation of a large number of

iterations [1].

§ 2. BASIC EQUATIONS AND BOUNDARY CONDITIONS FOR PROBLEMS
IN LAMINAR MULTI-COMPONENT BOUNDARY LAYER THEORY WITH HOMO-
GENEOUS AND HETEROGENEOUS REACTIONS FOR FLOW AROUND BODIES
WITH IMPERMEABLE AND THERMOCHEMICALLY DISINTEGRATING WALLS

2.1 Basic Concepts

In flow of a gas around a body involving a high enthalpy of deceleration
(for example, hO-Z 1500 -~ 2000 cal/gram) an intgnse heating of this gas takes
place as a result of which its surface begins to become thermochemically
disintegrated. Depending on the physico-chemical properties of the body's

material and the conditions of the streamlining,the disintegration may take

14




place due to melting, evaporation, sublimation, heating, pyrolysis, mechanical
disintegration, and most often due to the simultaneous occurrence of several
of these processes. Ignoring mechanical transport,we shall assume that a
mixture of gases flows to the boundary layer from the surface of the body,
solid or liquid, due to the disintegration; this mixture may enter into
chemical reaction with the gas of the boundary layer which itself in turn is

a rather complex mixture of products of disintegration and ionization of the
approaching current. Thus,we are concerned with the laminar boundary layer

in which several homogeneous chemical reactions may take place simultaneously.
In order for these reactions to be independent, it is necessary and sufficient’
that at least one of the components in each reaction not appear in any other
‘reaction. Let N be the total number of components in the flow. Let the
number of independent components, for which we can in particular take the
chemical elements and the electron components, be Ne' Then all other compon- ‘é
ents Ai (=1, cosy Nr =N ~ Ne) can be expressed due to the Nr reactions
through the base components Aj (G =1, .o, Ne),'inéparticular ?n the follow~-

’

ing form

"'ﬁ“’z s (;ax,..., #2) 2.1

Here Ai and Aj are the chemical symbols of the components, vij are the
stoichiometric coefficients, i.e., if we take the reaction products Ai (i-=.

1, eeoy Nr) which form as a result of the reactions from the base components ‘12
A, (3 =1, ocuy Ne) only once in each reaction and expand them from the left,

and if we expand all other components from the right and divide by the stoi-
chiometric coefficient in front of the reaction product, the choice of inde~
pendent reactions can be written in the form of (2.1). In accordance with

the first law of thermodynamics, the heats of the reactions which are necessary

for formation of the mass unit of the products A, with constants p and T, are

i.
- determined by equations

15




£ B B QuT)  (1mgi M)

ﬂi* . o (2‘2)

‘where Qi(T), [Qi] = cal/gram is the heat of the i-th reaction per gram of the
product Ai’ m, is the molecular weight of the i-th component, hi’ [hi] =
cal/gram is the specific enthalpy of the i~th component, determined by the

differential equation
Facum (=4 V)

where Cpi , [Cpi] = cal/gram*deg is the specific enthalpy of the i-th compon-

ent.

If the heats of the reactions are given, then from (2.2) it follows that
Nr of the enthalpies hi are expressed linearly through the enthalpy of the

base components hj°

We further assume that the mixture of gases in the boundary layer is a

mixture of ideal gases, i.e., the enthalpy of the mixture is equal to

,/, ZCn%x C«*% (¢'=4...!)~(~- ‘ Kz_:lf’ ﬂ

& 2.3)

. where pi, [pi] = gram/cm3 is the mass density of the i-th component, Ci is
‘the mass concentration of the i-th component, p, [p] = gram/cm3 is the density

of the mixture,
Let us compute the differential of.the enthalpy of the mixture byeusing
(2.2)
d;; G ; fede = eplT, Zheden % ede =
| Qadr-l'Z%/ Ae - ; Qudck = 0/(2 / ZC“O“) (2.4) |

G= g GrCk

16




where C 03’ [ij] = cal/gram-deg is the specific enthalpy of the j-th compon-

ent, cg is the concentration of the j-th element, equal by definition to

N ‘ = /]
‘CJ g\)lg—#ckazm/kck m/k~‘dxlm£ 5 o= 1 (/ 4.../V.'el}

2.5) - -
' Jeled (c=1,/\/'t)

Here mji is the amount of the mass of the j-th element in the i-th component.
By definition the concentration of C? is the concentration of the j-th ele-

ment. regardless of what component it is located in. For example, if only

chemical reactions (no ionization) occur in the flow and as the base com—*”t
ponents we select the chemical elements, then C§ represents the concentration
.0of the chemical element regardless of what component it is located in. In

‘the case of an arbitrary choice of the base components (Aj are not necessar-
ily chemical elements) the concentrations C? (G=1, o0y Ne) will be termed'
concentrations of base elements or simply concentrations of elements. 1In

the presence of ionization the electron component will always be included in

_the group of base elements. ’

As an example, let us look at a mixture composed of elements of 0, N, E

'

;(electrpn), in which, for example, six independent reactions take place

0 .-20 C Me=aN MO N+O 2.6)
OIS 0E  N'SEN-E  NO*ZN+0-E.
The'concentration of elements here will be given by the formulas
=Gt B ot i ot i Cor m“”"*
Ct/ ’CA/* uCﬂ’z" %ac"’o* mwt CW*%*"CM".’. 2.7
. - FLE - e
CE = CE mo,, Co-l- m,w- C’w' m~o+c"°+ i o

. Let us further look at the flow under the condition that the mixture of gases /10

at each point is quasi-neutral, i.e., if n? is the number of particles of the
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i-th sort per unit volume, e, is the charge of the i~th particle, then the

condition of quasi-neutrality can be written as

- X 'V : or £ or N ;
2_rie =0 YA grfﬁi& |

oy . | - - ; (2_8)

f'x(-a”’,%cé‘ %Ct’ (i=4...N)

¥
neFone,  aF=ton, g:,

‘:

Z Zk
K'l -

(2.8)

where X, is the molar (numerical) concentration of the i-th component, NA is

. the Avagadro number.

The condition of quasi-neutrality (2.8) may be written in the form

me ék = ;
E+; My e 0 (2.10)(

»

where NI is the number of ions in the mixture, e is the electron charge. But
- the left-hand side of Condition (2.10) is simply the concentration of the
electron elements. Therefore,in the framework of the assumption of quasi-

~neutrality, the concentration of the E element is always equal to zero

)
t

5 el( e ;
Ce+ ;—1 e mp, c “ (2.11)

Equation (2.11) may be assumed to be an integral of the basic equations of

motion, which will bhe given below.

If the concentrations of elements are retained in the current as a re=-
sult of the conditions of the problem, i.e., Cg = const (J = 1, ¢s0y Ne),
then from (2.4) it follows that

gd/c.eq,dr— Q/c.(T)o/c«—— Z / 0% Za/(é:@k) (2.12)

dribl’

i et et et
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This will be the case,for example,in the case of gas flow in the absence of
diffusion. However,in real cases with diffusion, even without the additiomn
of supplementary components to the flow from the side of the boundaries, the
concentrations C? will vary from point to point, i.ef, the liquid particle
in a real flow from the viewpoint of thermodynamics will always be an open
system,and the change in enthalpy dh for it will be computed from Formula
(2.4) rather than from (2.12).

2.2 Basic System of Equations for a Laminar Multi-Component Boundagy

Layer

The equations of a laminar asympotically thin two-dimensional stationary
boundary layer on two-dimensional paths (plane-parallel motion) and the bodies;
of revolution (axisymmetric motion), allowing for the chemical reactions and
the ionization reactions without allowing for the external electromagnetic

fig;ds and the radiation field, have the form [6]:
Equation of continuity:
&z (fu'tk)-/-@ (pm“}=a (2.13){
Momentum equation projected onto the y-axis:
ftl %' +fv'%“ =% Lé» %%g‘*@'%(/u%) (2.14)
Equation of diffusion of the components:

z .
.i. (‘

pu 2% +’M’"¥ oy =W e ¥) (2.15) -

along with the Stefan - Maxwell relationships

2% 96&7' '7" f
xf-a;“'z:ga/( TE‘”" i (2.16) y1q
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or

p N ' _ R/ }
O s A s A
N - T !
ceboebr (T TS, o
ag. %m ) y ﬁ(% D’) ﬂw’ Z =%.1/a[/ ?gl(:;j)(z 17)
F£al=0, ay = “/4 | T
=L . O S —
The heat flux equation:
o7 vr 2{:‘3L%%égi%fécécda:lt‘f,ﬂvéa </ i;; ALk :
1)

‘along with the expression for the reduced heat flux

T, ¥ .. DL
ﬂ - RAZX-’J; 9« /( _}L)_ ; (2.19) .

—A’ RArLéZ_d'kx/ak/(-K —%—

and the expression for the total heat flux along the‘y:axis

- M "
.7 = -+ %J{Z{ :
f’g'w;:‘ B (2.21)
The equation of state
Nooe & *
L =) ’
pp Bt PRy 2.2

(1 Terminology of I. Progozhin [7].
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Here x is the linear coordinate along the surface of the body, y is that along
the normal to the body's surface, i.e., we have chosen the usually accepted f
coordinate system here: the normals to the generatrices of the body and

their orthogonal trajectories, u, v are the projections of the velocity vector :
onto the x and y-axes, r(x) is the radius of the cross section of the body

of revolution, k = 0 with flow around a two-dimensional path (plane~parallel
problem), k = 1 for flow around a body of revolution (axisymmetrical problem),
Ji [Ji] = gfam/émzsec is the mass diffusion flow of the i-th component in

the direction of the y-axis, Wi’ [Wi] = gram/cmBSec is the mass rate of form—-
ation of the i-th component per unit volume per unit of time due to all the
possible reactions in the boundary layer, Vi is the diffusion velocity of the’

13 L2
‘expressions for which will be given below, k is the Boltzmann constant, e, is

\i—th component, a ] = sec/cm2 is the coefficient of resistance, the

the electric charge of the i-th component, E is the electric field strength

which arises due to the separatioﬁ of charges (the external field is equal to
zero), DiT, [DiT] = gram/cm.sec is the coefficient of thermal diffusion of
theii—th component, T is the temperature, Ue(x) is the spgcified velocity of

the nonviscous flow on a given body, P is the pressure, m is the mean molecu-

lar weight, n is the number of moies per unit volume, u is the coefficient of
dynamic viscosity, A is the ordinary coefficient of thermal conductivity, the
coefficient A' is computed in the kinetic theory of gases through the ex-

pansion coefficients in the Sonin polynomial [8], RA is the absolute gas

constant, N is the number of components in the mixture; the other symbols

are given in Section 2.1. The last term in (2.16) and (2.17) expresses the
~effect of thermal diffusion, the second term in (2.19) is the appearance of

. the diffusion thermal effect. Both these effects, especially the latter, have /12
little influence on the solution to the problem in the case of a mixture of ‘
i' (1=1, ...

N) in this case are small. In the presence of significant ionization there’

neutral gases, since the coefficients of thermal diffusion D

is a suspicion that these effects may make a considerable contribution to
the solution of the problem. However this question at the present time is
still not clear. The effect of barodiffusion, just as the effect of the

viscous transport of momentum, will occur on the strength of the approxima-
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(2)

tions in the boundary layer theory ' ~’. The coefficients of resistance.aij (X, .
j=1, 2, ... N) have a different expression depending on which law the
interaction of the component particles obeys during their convergence. With

a Coulomb interaction of the particles,we have in first approkimation the com- i

putations of the transport coefficients [8]

L afe..7 .3 AT (mitmi) % AT /
- ay [94/]1,‘-/6['& me m/ : ] P i.}ér 1‘?&/1_/

\' v .'-‘,C' ing ' “
(31, trcr-gim ] Cryex, Lot

where Aij is the Coloumb logarithm.

With the interaction between the particles and the Lennard - Jones Po-

.tential (6 - 12) [8].

‘ r '4 a T

[ﬂ,/]z /a['?rﬁffﬁf”‘”] %‘ L/,_Q‘ (57/) o \ ‘
62/ (G +G }) 6‘[/':.\/?‘% Ty = g‘]

[Dy] =is€: [me]= gram:~ [ T] /< [ P] = cmsefgz [é’]xm ‘

o

‘where o, is the distance between particles of i~th kind for which the energy
of the interaction is equal to zero, €, is the absolute value of the maximal "

A 1)K
energy of attraction, »{24 f (1ﬁ/) is a known function which depends weakly

‘on the temperature when [GyJ?3 [8].

"With the interaction between rigid spheres having diameters o and cj we

- have

AT (e ) e B ‘
af/ [ﬂ‘/]z 7 [ T'{:m/mjj] “F 5?/» “(6* ,Z

2) Proof of the small influence of the viscous momentum transport in
approximation of the boundary layer theory was given in the thesis of G. A.
- Danilin, a student at Moscow State University.
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It should be mentioned that, unl;ke the last formula for Gij’ the expression
for 04 in the case of interaction with the Lennard -~ Jones potential, Uij =

- 1/2 (oi + Gj), is a semiempirical one,vjust as the formula for eij' The System
(2.13) - (2.22) along with (2.11) represents a nonlinear system of 2N + 5.
Equations (2.13) - (2.18), (2.22) for 2N + 5 unknown functions: f@ v, 7;Jé;t

:c{{?iggi,ﬁng%'/?s44.“ #)! . The pressure P is given as a function of x.

In an actual solution to the problem, it is often convenient to introduce

the concentrations of elements (2.5). Let us obtain equations for them.

In the presence of arbitrary reactions in the flow, the element as such
‘does not disappear and does not appear in the flow. Therefore if the equations
of diffusion of the components (2.15) are multiplied by the mass of the j-~th
telement in the i-~th component, i.e., by mji =-vijmj/mi'and are summed over all -
Ecomponents, we then find Ne equations of diffusion of the elemgnts in ;he‘form,

o * * > ;
p@EEvBT)r 5F =0 o

N - PO e e e e s+ e -
i SO R

(2.23)

\ < » ¥4 0 ;
PR L LTIy
7 ?//*«-—z; e e (74 We= NN
;since on the strength of the above
O mpellemo (f=s... o) ] |
mikWe =0 (1=4. . NE) (2.24)
ke, / K"”‘ / 1' I g

‘Let us mention that the equations in (2.23) are valid always, whether reactions
take place or not and whether they take place at a finite rate or at an in-

‘finite rate (chemical balance).

If we write Equation (2.23) for the electron component, then on the
_strength of (2.11) we find . :
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where f(x) is an arbitrary function. For its determination we compute the
‘total charge transport across the boundary layer ‘

USROSy

ﬁi,z”’mekw-nazmekwwwzz L e = 14 (6 2 G- o )=‘

%=1

ez . ‘ .
Mmf(z L Mg .Zrk—ys}—”‘/‘//’%&};'?: : (2.25).

€ iy

where v, is the mean statistical velocity of the i-th component. Hence,it
follows that if the ionized gas does not contact the external conductors, in
' the future we shall assume that JE = 0 at the boundary, whence f(x){§505

" Consequently, we shall have still one more integral

VL
Je =0 ' (2.26)
Furthermore, we always have
e F -0 (2.27)
i Cu=4 =0 .
KL ’ k= X

which follows from the determination of the concentrations and flows. Thus,
. in our formulation, four integrals exist (2.11), (2.26) and (2.27) which we

" shall use in the future. The equations in (2.23) are preferable to those in
(2.15), since these latter contain a non-zero right-hand side (mass sources).

' However, the equations in (2.23)] are ‘smaller - th§?~N'A . The missing N - N =

Nr equations for the concentrations will be, in the case of reactions taking

place at finite rates, the equations of diffusion for the reaction products

pETE TG E e e ) e
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In the case of reactions taking place with infinite rapidity in the flow

(chemical balance), these will be the conditions of equilibrium

'['\/:P:&K-- Ko (T) ﬁ’*‘»"j"/"/j (2.29)

s the partial pressure of the i-th component, Kp, i(T) is a known __

i .
' {_constant of equilibrium of the i-th reaction. In accordance with the des-

where P

e

cription of the reaction in the form of (2.1), these conditions are rewritten

. a8

[ = Ko (T) (6= 4 M)

(2.30)

By converting in the last expression to mass concentrations, we ultimate-
’ - N M ? N : * .
“ly find

! H(Tn/”) mz) TP, Y JEE/U;J; (=4

(2.30")

In the case of chemical balance from Equations (2.15), after solving the
- problem, we can compute the left-hand side and in the same way compute the
" distribution of mass sources Wi (i =1, ¢eaey N) due to the balanced chemical

reactions. However, as a rule, this is not done in the literature. To con~.

“ clude this section, let us transform the heat flux equation (2.18) to a more
~convenient form; let us introduce into it explicitly the heats .of the re--
~actions. This last term in Equation (2.18), allowing for (2.2) and the

,

. equations in (2.15), may be represented as -
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4 .
=) Ak Wik = -Z hu Wi = Z %k Wk Z Cz?ka o
4

2k
I Qk( ’ Ey *

Ny
:é“"‘m(f“ ow * ;v 93/) e

. since on the strength of conservation of the mass of elements in the Reactions °

(2.1) the following conditions are always satisfied:

=
M‘/{ + ; \714/ WK =0 /J =4, Me/i (2.32)

‘If we substitute Expression (2.31) into (2.18), we find

' @cw
fu[._C,bfc)ac ;0kaf]*f”’[9°dy ;@k

-ty g@k&/-feé@%’fi*ﬂf”‘”‘/ &Gy 5“‘%@,

- Using (2 2) the last two terms are transformed into simpler form )
s v .
BQk &/ik !
ZZQ/”“ %:Zc ~Z%Z\’K/ G +Z.7 -
%_‘ :

K=’£ K‘”‘Zd
/.MHI/ ag aé/ /—quo{ / = — - 5 "::“Lf

' after which the heat flux equation will be

L A/*&! Sk ___W: ;'
f“-[c/"aw Z_Qk'am ]+)ozr[c;o C{)K a; ].- | :
‘ ;,“7.#:{(2.‘33)1

l“: oy (- ;Q‘f“‘ f““‘“"’“‘ */”(5’5’/"9?/ ,,,,, F7
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In such a form of the heat flux equations, it is easy to compute the influence

of the heats of the reactions on the temperature.

If Equation (2.14) is multiplied by u and added to the heat flux Equation :
(2 33), we then find the equatlon of energy described through the temperature

Jau[cﬂaa: Ox(_ﬂ/ ZQK§'5¢£]+fV[CP5y ay(z] g@‘
5%[? ;Qk%+/uay(2/] ayZC/«v . ; (234)

=A&+1

The equation of energy in such form can be conveniently used in the.
presence of chemical reactions occuring at finite or infinite rates. For
"frozen" flows the heat flux equation is obtained from (2.18) if we set W, = 0

i
(i=1, ..., N) in it; the equation of energy for a "frozen" flow will be

e e e

Let us introduce into (2.34) the concept of total enthalpy in the pre--
sence of chemical reactions. With the flow of an ideal gas around a body,
without allowing for radiation along the jet stream on the surface;there re~

mains a constant value (total enthalpy of the advancing current)

2 i

H ﬂe+ cheéku ,z = %«: (2.36) |

-which with the aid of (2.2) can be represented in the form

i /’{e = Z C/e ée - ; Cre Qk (705)"' ‘ ;; (237)

/- /H-/ .

‘whereithe index "e" refers to the parameters of the nonviscous gas on the
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wall or in the boundary layer scale to the conditions on the outermost Bound-

:ary of the boundary layer, the index "«'" refers to the conditions in the ad-
vancing flow. It is convenient to have such a value also for the flow in a /15
boundary layer in the presence of chemical reactions. Using (2.2), the convec~

tive part in (2.34) can be represented as, for example,

; T M P @K _ '

‘ECP%“ZQK%-%“Z@% . (Ck@k)—F;Ck = |
S | ”@ii Gl
‘=J ol C/ a‘z ZB‘” (C‘.:Qk) ;ﬂg};% nth+f/ oa : /:-é am("‘k )‘i .
| N ; '

i=Z§a cM,; Zax(cxak) 5 (9e~¢/)

"lt’*.l

ol o
Here we have used the conditions %—cf =='OJ‘” , which express the fact that
along the jet stream of an external nonviscous flow the concentrations of ele-
ments are retained. Now if in Equation (2.34) we ‘introduce a{ new unknown func-

tion (total enthalpy) instead of the temperature T,

4 M -'L ,
H"""Z Co(& %/—-ZCka-f- 2 (2.38)

Jerhrd

_which on the strength of- (2..36) and (2.37.). will be constant at the outermost
. boundary of the boundary layer

|He= comt (2.39)

‘it then assumes the following form

fu' 99.1/;/ *f”@y [?’ 99%/( } KZ' ' {6"—1)5 (—z——)]-/-
? s Z (Qe "'Q}[_P(A’@ﬁ/‘ o+ ‘PD’-?—gL“ i ‘ (2.40)
' /"Mu R

g a2 p
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H
T

| ;or by using Equation (2.33), the following form
R _

F“f%&z/'*.t’?fay *;[wax(g G)e)ﬁf/ﬁ‘f?fay[q ge)%/+3é7 A}]

f‘ay[ ?*‘% eg/( /* N

'where €7=7%%kf is the Prandtl number.

Let us transform the right-hand side of Equation (2.41) such that the

{function H enters into it. We find by using (2.2)
!

; Jlay i&%jk"‘cp(,,mf% = M) , :
—c,[_;lé‘z(qeﬁ/) Zay(cx@wa[Z{g G°)5F +Za.< 7

i?hggrEquation (2.41) can be written in the following form

_Pu,@:cff/ He)ﬂo?fa (/’/ He)+2: {f“@x[@"éjc)é)_]*
+j’278y[(/ G/e)@]*‘ ay (%% )} » .
{ LrE /' (H- He)+(€‘1)5y( z} 2 (6-G)5

Dx K
+ZQK(Z< £5)- mgj ﬁf————“—%(vrm}

95‘ ]+ (2 42) .

" ‘Let us note that with identical specific heats of the elements,or when the

' element is alone, the sums of the left and the right for j disappear from Nr +.

1 to N. In practice, for the majority of sets of elements,this assumption is

' satisfied quite well.

The double sum in (2.42) which allows for the diffusion thermal effect
;;can be feasibly transformed to a mofe graphic form by'egcluding from it tﬁe
.idiffusion currents of the base components Qyﬂxff@ffj#?; using the defini-
. tions in (2.23); then it assumes the following form
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w

AN z; DE = - 3 fhézjf?
:%‘/E W“k/ (Vk*V) 2———67‘ J-%iz:/mf/J

where

652 = Zi' ;ET\AV 2:;7

J=rerd

and:Equations (2.41) and (2 42) will correspondingly be

_P“ ax (H_/L/e)"'f?f@ (H’He)"'_z Z{"“a.:c [(9 /9)%}]*,?”6,[_—(9 C]c)/; _7+ :
+a,(7 é/)}— By[/lay @ 5( % wja,(i’“ﬁz? (@k+ %16“ ) ) o

e (2 41)

JEMerd

‘fuaxﬁ—/-He)+fU9 [H’He)+£ {P“Da:[(q/ ge)ﬂ/]*fv‘g_[(%’ 9‘)4]{'

+59(‘Zj/)} 59’{9» [5 (HHe +(Gj)6 (;f/ }/;(Ce 9}9 4 ]+ ,,“(2.42')
1 ‘+ZEQK(\%(*Z%S;K)]+ l?,q TZZ .ZL /- Z”"RATE;Z %}

_A/zl

—

Let us exclude the electric field E, by using the condition of plasma quasi-.

neutrality (2.8). For this let us differentiate Condltlon (2. 8) described
(3

’through the molar concentrations

Bxy
=, e"??._,__?

(3) We can look at Conditions (2.8) as integrals of the basic system
of equations. Therefore,they can be differentiated on the strength of the |

solutions.
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- 2N + 4 unknown functions: u, v, T, !P,"(.‘(/ 7{_\/!:1,,/\/ / e

~ and substitute Expression (2.16) into it. Hence,then we find the electric

field which arises due to separation of the charges

e -fnd) L et 3 o 2] o

If we substitute this expression into (2.16), we find a convenient form of
the Stefan - Maxwell expressions for the derivatives of the molar concentra-

tions

4 -a-@-=-——>;az/~w,>§#£m/-eez;zek-e/»am« |

'*[Z &ZxkékZK]%?I " -Ecze.u 3 (h 4f'°’ ”/

(2.44)

Let us now do the same for the mass description of the diffusion. We have

o i

»‘~w-~;‘l_2;‘gg,,9—§=o, ”a-=—»7e %” - -1;; a
Z—:]-:--‘—"-[ ‘ ;xkak/{em&g)-f oy /;x)%):;‘/(z[_;xkekz)ﬂ’“ (2.45)"

L,

?64('761‘-‘—!?'5@%1» 'ﬁ‘[avw" g"rk%[—,—,;g‘— ) (e, ﬁz‘-&%(&_?u,;z
7 £ i L’—& e e i
+ [ - ECKZK (e J’);a‘xekzk] 7 y‘ 7 sl (2.46)

Thus, the problem was reduced to solving the combined Equations (2.13), (2.14),
the equations of diffusion for the reaction products (2.28), and equations of
element diffusion (2.33) combined with Expressions (2.44) or (2.46), the heat
flux equation (2.18) and Equation (2.22) in the presence of integrals (2.11),
(2.26) and (2.27). The equations represent a system of 2N + 4 equations for |

On the strength of the presence of the integrals one of the diffusion
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equations for the reaction products (2.28) can be dropped; and we can gf?oif'
drop the diffusion equation for the electron element from the equations in
(2.23). Then the concentration and the diffusion flux of one of the com-

ponents and the concentration and diffusion flux of the electron compoment

may be found from the above integrals.

If we determine the effective ambipolar coefficients of diffusion in the

: following manner [9 10]:

3A i% -gizq;qu+ J5 z[ Cuc et ﬁ? —f%i'*ﬂﬂ «fy(a“?)nyrnx 'ﬂf‘E/J;

(2.47)
(i= 4., V)

then the Stefan - Maxwell Expressions (2.46) will assume the form of genera- .

lized Fick laws

57 J’ilav'lz'+J% 22"ﬂ[' ¢ %?;ckéi*"ﬁi }C)Z:bakem;z:k

‘9&h7’
5y ]

(2.48)

On a given field of concentrations, temperature and pressure, the relation-
ships in (2 47) may be studieg_gs a system of N equations for determining 2N

@.. 5 W
unknowns: 2)« Yy e, Tme, This system should be supplemented by.

the following three equations

3 e e
S=0 5 =L=0 L =0 (2.49)
290 BRrT L

For a mixture of only neutral components, this latter relationship from
(2.49) should be omitted. The second relationship from (2.49) indicates that
the equations in (2.47) are not dependent. Therefore,the independent equa-
tions from (2.47) and (2.49) will be N ¥ 2 altogether. If we have some solution

. ' m} e g T
¢ to this system: : Eh ..,57 Qh_ Zw; ZK, , then it is easyito see that the

solution will also be: B%.., DNy o ... 4  where a is an arbitrary
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" number. Therefore,we shall assume as unknown 2N - 1 values:'£¥?pv'>¢J
7/ZA , %i/y4, for which the System (2.47) and (2.49) will be linear. From

the preceding it follows that this system will have a unique solution when

. and only when N = 2 (the case of a neutral mixture), and when N = 3 (the case

of plaéma). In the case of a neutral mixture when N = 2,the solution will be:

@lr 9&_"‘ 9(]. y{. =_‘z (2050) :
In the case of plasma, consisting of three components (In, In+1, E), the
solution will be
f)L @,7'—'-1‘3,= 9L (Emz)—l- Q:a(n E}*—-}'a(n,ml)
e :

i ' ’
| fs e,, o’Cn dé‘ emlxnfl ’ d;.: e xE. ’ 0(: éﬂ* J‘* ' ‘ (2.51)

| —o Tntl_ o, 7nel , | .
‘ e ome ’ Te _ms — e

It is easy to show that the effective coefficients of diffusion in molar des- /18
cription in this particular case will agree respectively with Expressions
(2.50) and (2.51). 1In the case when N > 2 (neutral mixture) or N > 3
(plasma), System (2.47) and (2.49) has an innumerable set of solutions. In
this case to find the unique solution we must have supplemehtal equations in °
an amount N - 2 for the neutral mixture and N - 3 for the plasma. These
supplemental expressions_maywpg obtained only after finding the actual solu~’
tioﬁ,'when the ratios f%ifffirgﬁgg.become known, where k = N - 2 for a
mixture of neutral gases and k = N - 3 for plasma. See Reference [10] for

a more detailed .description. Thus, if the diffusion currents can be repre~-

sented in the form of Fick laws (we can ignore thermal diffusion),

(7'4-'7’9{ 5 (i=4. M/ (2.52)

then the Lewis - Semenov number must appear in the .equations
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a 2 o n
L[-—"‘.‘ 'E%__— .:' ({E'{,""l»/f/)__ /(2053)

The diffusion equations (2.15) and the energy equation (2.42) can then be

rewritten as:

fuaz;(f/f/eﬁpv’@y(/-//'/e)"z {f“él [(Q */&)/’y]+FZ)’9a[(9 )/7]+

(2 55)

G ARGl UG o B fr g 0T

where Si is the Schmidt number.

The validity of Equations (2.54) and (2.55) is sometimes postulated

without sufficient bases for a multi-component mixture with substantially

different diffusion properties of the components. The system of basic
laminar boundary 1ayér equations, given above for the stationary two-dimen-
sional motions, assumes for certain assumptions still another series of -

Crocco integrals besides those given above which are always valid.

Let us assume: (1) the specific heats of the elements are identical;
(2). the thermal diffusion and diffusion thermal effect are small Tﬂ'ﬁ“?f
‘(¢‘='1”“ A/" 3 (3) G=Sc=bc=4 rc=4., M) ; (4) the flow is "frozen":
0 (( 1 A// and; (5) -d— =0 — the streamline flow is around the
plate.' Then the following partlcular integrals are valid:
L H-He= auripp ™, i’f_fﬁf‘f" ' f £k yeuy M (2.56)

where a, B, O Bi are constants,
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Thus, in this ideal case, it is sufficient to find only the velocities
~ from the system of two equations (2.13) and (2.14) with known variable co-
. efficients p and u,and the problem will be completely solved if the boundary
conditions for H and Ci are compatible with (2.56).

In the general case, significant mathematical difficulties are involved
in finding the solution to the system of laminar multi-component boundary
layer equations given above with reactions in the current even for particular

problems,

In conclusion of this section,let us cite the Stefan - Maxwell expression

allowing for barodiffusion. For the quasi-neutral mixture [6], we have

” A oA e _
- éw‘r“,&%’“‘/f’?ﬁﬁ’ L)-af *vWZf*Vﬂ‘Pf 2
, ’éva-z':-‘ .g‘Zz—jgﬂc/-f-IZ[Ca(/"Zxxakj (m )]%‘7"‘
- { ] [ /_ = — .

From the condition of quasi—neutrality,we find the field E:

i
it —p

- g%@gaw@k-%/+v&r2w&2kw&/ﬁ; o

If we substitute this expression into the previous expressions we ultimately.

find

gy SR
é ;é% Va?' i%éjg:a%¢27 f'Zi:thﬁ/ 'Q:&aca%y{éxfsclf AJ%j,‘ff ¢
‘3 (2.44")
. o+ V&T(Z‘ & g:.uekz[).ﬁy&/g(ﬂ .i & Z "*e“)
A | fomt, by )
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K=l

These are two equivalent systems of N -1 independent equations each.

2.3 Boundary Conditions.

The boundary conditions at the outermost boundary of the boundary layer
are the ordinary ones. The unknown functions must satisfy the asymptotic

~approach to their values at the outermost boundary of the boundary.layer:
?

w(s i) — Le(2) " Hiz g)— He = cot | &'—rle(®) (og..,n)
‘ (2.57)

'when”;ffjf}?f;
The valués of the functions [,(e,[acj,/'/e ’ Cre() ( “fé :/V must be
determined from solution to the problem on the motion of a nonviscous liquid. :
Furthermore, we shall take advantage of the condition that at the

outermost boundary of the boundary layer the concentrations of elements are

constant and, equal to their values in the approaching current:

o o B A L /8 f
Glay) = Ge =G = comt? (/4.0 AR, (2.58)

The temperature on the outermost boundary of the boundary layer must
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satisfy the differential energy equation described along the jet stream of

the external nonviscous flow

M d R ,

- ory ‘which is the same,

N »* 3 h"(- 2 '
J;,f{‘ %'; 2 [ Qu(7) e T+ a%c[%] =0. 2.39)

1 If we solve this latter equation allowing for (2.58), we f£ind

o - . i . . T EEOR NS
Pl e be - E;"*e Qu(7e) # 5= cos = He = %,. + Zf-z/ (2:60)
I : | ¥ el

o
ot

i._Allowing for (2.2),we can write

i
’

v

: - %g Z o ffea ™ Z Geoo Qk (T"’)
| %,_. g, Cuoo Hico /WMQ Y (2.61)
Then from (2.60), (2.61) and (2.58) we find the equation for Te Q_(_)_

- 2.
Ue™ Ues _ (2.62) |

9"*’ /Gb/dr— i[ckeO#(Te) Ckm@k(ré)]* “7"—;——0 ;

; PR
Here Hee,los Goo(i=4..., M), 9': O.EI’ g Mf}_ are constants given from the |
conditions of the problem. With external flow around bodies usually:Ciee= 0J ‘A
((=4...,, ) . Thus, unlike the single-component boundary layer, here we
must give N concentrations at the outermost boundary of the boundary layer,
which greatly complicates formulation of the problem since these data, as a

s rule, are lacking. The published solutions to problems of the flow arm;nd

bodies by a nonviscous gas in the presence of reactions usually do not con-

~ tain complete information on the composition of the gas on the surface.
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" ' However,with certain reasonable assumptions relative to the character of the

reactions in the jet stream of a nonviscous flow over a body or with addi-~
tional assumptions relative to the character of the interaction between the
hydrodynamic parameters and the chemical reactions, the concentrations

Cie(x) can be easily found (see [6]).

Let us note that under the conditions of (2.57) the first and second
derivatives of the unknown functions along y strive to zero when y » ». The
"initial” conditions along the x coordinate will correspond to the condition
of symmetry on the center line of the flow. Quite different boundary condi-. .
tions may be given on the surface of a body, depending on the type of prob- |

lem involved.

First let us look at the classical formulation of the problem of finding
viscous friction and convective heat flux for a body that is impermeable for .
;‘ngl‘compdnents and which has a given temperature of the surface °

/

T (%,0)=Tw (=) | (2.63)
T&(x) is a known function of x.

If the surface of the body is stationary (mo walls on it), then in the
absolute system of coordinates associated with the body, the conditions of

attachment and impermeability will give

wulx9=0 v(X%e)=0 (2.64)

The conditions for concentrations on the body will be different depend-
ing on the phyico-chemical properties of the wall. But in any case, for an

impermeable wall,the conditions of zero flow of the elements must be satis-

fied.
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. These conditions essentially [see (2.46)] superpose the relationship on the

~ derivatives of the concentrations along the normal coordinate on the wall,

The remaining Nr =N - Ne conditions for the concentrations will de-
. pend on the character of the reactions on the wall. If the wall is an ideal

. catalyzer, then the conditions of chemical balance must be satisfied on it.

X ﬁ These will often be the reactions of recombination and neutralization, - Thus,:

o 3% y ~
(e ) e Kp,t (Tw dif=L (i ,,/ (2.66)
1 ﬂe{/ ) ) o (Pm)¥E /é:mul ﬂ g m) ‘

D) Ko(TE)  freinn)
@ (T) P(=) (c‘ 1, ..,//4/ (2.67)

i+ Tgteee+ Ay ==/VQW U/Vﬁé /V%p A/t

There will be exactly N conditions in (2.65) -~ (2.67).

When the reactions on the wall take place at finite rates, instead of
(2.66) and (2.67),it follows that

Je (%0)= % (PT, ¢ .csln) (C=4..., V2) (2.68)
where s [ri] ='gram/cmzsec is the surface density of formation of the i-th /21
component due to heterogeneous chemical reactions. Determination of the :

function r, in each specific case constitutes a fundamental problem.

Finally!in the case of a chemically neutral wall

Se(moi=0 (b= 4 ) (2.69
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Along with the conditions in (2.65) this is reduced to the following final

boundary conditions on a chemically neutral wall

O (mo)=0  (C=ty.., W) (2.70)

Now let us look at the more complex case of boundary conditions on a
body when its surface is thermochemically disintegrated, i.e., when the mat-
erial of the body enters into a physico-chemical interaction with the gases

of the boundary layer.

For concreteness let us look at the following model of disintegration
which to some degree models the disintegration of heat shield coatings, for

example, textolite.

After heating of a semi-infinite body up to a certain characteristic
“temperature T*,let disintegration reactions (pyrolysis) of a part of the
products begin to take place. As a result of this, gases and porous con-
densed residue (coke residue) are formed, through which these gases may be
filtered and transported through the surface to the boundary layer. With
further heating of the body temperatures higher than T*, the pyrolysis-
front will be shifted inside the body. The surface of the body acquires a
temperature Tw > T%*, and heterogeneous reactions may additionally take place.
on it with pyrolytic gases and gases from the boundary layer escaping from
the body. Furthermore, the reactions may occur also between the filtering
gases and the residue. There will be two regions in the body then. The
first region is a carbonized layer with gases filtering through it,and the
second region is a heated body having the initial physical properties. Dur-
ing nonstationary heating the surface of the body and the pyrolysis front ;
will be shifted at different velocities. Under stationary heating conditions;"-
" which we shall study, both fronts will be shifted at’an~identical velocity,
equal to the disintegration rate of the body v around which tﬁe flow is
passing. This velocity will be a function of x.
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. where p

Therefore, strictly speaking, even for stationary flow conditions the
flow over the disrupted surface will be nonstationary. Then in writing the
boundary layer equations in the coordinate system associated with the dis=

integration front as we shall do, terms are added of order %%,%3%20 s
&Y is the density of the body. Since j%p*yO'a , these terms can
then be ignored. Therefore, the boundary layer equations in this movable

coordinate system remain the same as in the absolute coordinate system

. associated with the body. Of course, here we shall assume that as a result.

of disintegrating the surface of .the body is sufficiently smooth, i.e.,

istic length, Re is the Reynolds number.

In this case a vertical component of the velocity vector appears on
the wall that is non-zero, the so-called flow. We shall assume in this

paper that the flow is sufficiently small,so that the sufficient conditions

;_are not disrupted for validity of the boundary layer equations. Here we

shall also assume that the distribution of pressure,‘veloqity, temperature
and concentrations on the outermost boundary of the boundary layer will be
the same as with streamline flow around a non-disintegrating body. Then the

conditions for y + « remain the same, i.e., (2.57), (2.58), (2.62)."

We shall also postulate satisfaction of the condition of attachment
(2.64).

If we look Qt the general case of a heterogeneous heating of the body,:

then the escape of a component will take place both due to surface heating

(4)

and due to flow through the pores inside the material of the body" '’, i.e.,

(4) This case is typical for the thermochemical disintegration of
thermoplastics. For example, with heating of textolite, carbon monoxide is

- formed on the surface both due to heterogeneous heat of the coke residue

and due to the flow of CO, which forms as a result of pyrolysis of the
plastic. ' ' '
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where v, is the mean statistical velocity of the i~th component, ﬁ?l’v};({)_ -
is the density of the mass current of the flowing part. of the i~th component,
u is the surface density of the formation of the i-th component in the

' heterogeneous reactions. If we sum the conditions in (2.71) we find, by

| taking into account that for a flowing mass of gas the law of comservation of

* mass 'is valid, that '
Pl = 770 572 .

- where $PVU? is the mass surface velocity of the thermochemical disinte-

5 gration of the body.
Then (2.71) can be written as:

. . . N - e - ,.1;1, - I 1 - ﬂ ﬁ, . ey e '(
| Cpﬁw (C[—- a_rb)w + %w - iy %.(/ y{./ )"’=f(.'( /(7/[’(" U"/ﬁ‘*ﬁ--v A//f 2.73) /22
4 .
where ,7[ is the diffusion flow of the i-th component in the body with

approach to the surface from the side of the body. (

Under stationary conditions,disintegration from the elementary examina-
tions of the laws of conservation of mass of the components, it will follow
that the gases inside the coke layer must be at rest relative to the residue. ‘_
Then @W; o ,.(’:..:4-"/ ~) . In the general case determination of the currents '
9}’# is an independent problem, whose solution will depend on the detailed
model of the thermochemical disintegration of the body. 1In this paper we
shall assume the flows %% /f=4..,#/i equal to zero.

If we multiply Equation (2.73) by EK“%q and sum over all com- __ |
ponents,we then find the conditions .qu conservation of the elements on the

surface
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!

" ' where Cﬁ(l) is the concentration of elements of the body's material with

approach to the heating front from the side of the body. These. numbers are

specified in this formulation.

Instead of the Conditions (2.73) it is more convenient to use the condi-

tions of conmservation of elements (2.74) and N - Ne in the solution. These

~ are conditions of comnservation of mass in the independent Nr reactions

’

(0l (a0 4 = e ety i) O

With a specified value of (.ﬁriivi Expressions (2.74) and (2.75) givév

~exactly N conditions for N concentrations.

In the case of chemical balance on the surface, Conditions (2.75) must

be replaced by Expressions (2.66), (2.67). Conditions (2.74) remain.

In the specified formulation the temperature on the wall is not given,
therefore,we must turn our attention to the condition of conservation of
energy at the heafing front which in approximation of the boundary layer
theory will be [11] (the index "w" is omitted) .

] I e s T e ey ;
PUR+g 3 o T — g  tgTlR= Py WJ Vs @ o= oWyt | (2.76)

The asymmetry of condition (2.76) is the result of the assumption that

the material of the streamlined body does not transmit and does not absorb

- the.radiation;and no diffusion phenomenon appears in it. --. . o~ . - - *
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Since a part of the body components are in the condensed phase, then

v ) X 7 :
fem K= al (et AT g e @.77)

where hi(l) is the enthalpy of the i-th component in the gaseous state at
¢ the surface temperature of the body, Ai is the heat of the phase transition

of the i-th component from the condensed state to the gaseous state.
If we use (2.77), (2.2) and (2.74), Condition (2.76) may be written as

“'ZQK (9v’&<+.'7;<)+? ; +€6“T”~-—Z_—_ ak(f(/)lf(/) ")+ g,”’ yer (2.76)

s,__,_ e ey e - %—~«A'.~‘w‘ U

“J' p_ K P
A= c‘%‘““ﬁ (2.78)

. where A¢ is the total heat of the phase transition.

It is easy té_show that under stationary disintegration conditions [12]
D fTO_ T
G =-p (2"~ 1..) (2.79)

T~ . ;
where ﬁf? ﬁﬁi is the heat necessary for heating a unit of mass of the body
material from the initial temperature T__ inside the body up to the temp-
erature on the surface by allowing for all the possible pyrolytic reactions

i excluding the phase transitioms at the front.

Finally the condition of conservation of energy-on the surface of a

- body which ishdisingegrating and heated from the surface is written as

E \i 'Z—z: awk +¢ gz +€6'RT"+yzm ~o§ S (2.80) /23

where
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Ny —~~ ~ ;
L 0 CQ_/%a‘I
A=a4"-7 akm‘w SARE (2.81)

is the total heat necessary for heating a unit of mass of the body material
from the initial temperature T__ to the temperature on the surface by allow=
ing for the absorption of heat in the body under all possible pyrolytic
" reactions (the term ﬁ(l) - %Lm), in all phase transitions (the term A¢), in
iall heterogeneous reactioné at the front up to formation of the gas composi~
étion on the surface equal to Ciw (i=1, ..., N?).
We should make some comment relative to qR. If the gas on the boundary
{ layer is transparent, then qR may be taken from the solution to the flow
. problem around a body by a nonviscous gas, taking radiation into account.

; However, in the presence of a flow of a foreign gas and absorption of the rad-

. iation in it, we can show that qR will differ significantly from the radiation

; qeR-which is incident on the outermost boundary of the boundary layer, i.e.,

$'= gw =2~ nfro), | (2.82)

_ R ) . ) | ,
' where the value y 1is a complex function of interaction between the radiation

- and the flow in the boundary layer. It may be determined only after solving
. the problem of flow in the boundary layer allowing for the radiation. This
é problem is of independent interest and has not been studied here. In this

% respect let us mention that the flows  §? (L1 =1, ooy Nr) and q in (2.80)

, also must be found by allowing for the interaction between the flow and the
% radiation field. However,we can assume that with these values of the flow

f for which qR becomes significantly different from qeR9 the flows J¢ and q

f will be much less than qR, and this will not lead to any notable error in the 5
N4

'f equation of energy balance (2.80). Finally, if JQ.(1,= l, «v., N) and q are
’; determined from System (2.13) = (2.22), then (2.80) will hpld only in the
' case if the radiation does not interact with the flow field. 'Generally

(2.80) is an exact expression. An unknown function (pv)w enters in the

G
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" conditions computed above. Therefore,in the problems of thermochemical dié-ff?
- integration we must, in addition to the laws of conservation, add the condi-.

| tions for continuity of the tangential velocity component and temperature.

The supplemental condition must follow from the specific form of the disin-

" tegration mechanism. For example, in the case of pure evaporation this may

be either the condition of balanced evaporation or the condition of evapora-
tion at a finite rate [13]. In the case of disintegration of complex materials
the missing condition may be taken from experiment in the form of a kinetic
curve, which relates the_disintegration rate and the temperature of the sur-

face [6], etc.

Below we shall examine in greater detail the basic formulations of the

§ problems.

§ 3. PROBLEM ON A CHEMICALLY FROZEN FLOW IN A BOUNDARY
LAYER OVER AN IMPERMEABLE SURFACE HAVING
ARBITRARY CATALYTIC CHARACTERISTICS

If the flow in a Boundary layer is frozen, i.e., the reactions take
place so slowly that they can not take place during the life time of the
liquid particle in the boundary layer, we can then use Wi (i=1, ..., N) in

all the diffusion equations in (2.15). From these equations it will follow of -

;
§

necessity that Cie = const when y - », That is to say, for a "frozen" flow
in a boundary layer, we must of necessity look at the "frozen'" flow in a non-
viscous flow over the body. Furthefmore, it often makes sense to consider
the "frozen" flow in the boundary layer as a flow which simulates the bal-
anced flow in it, fbf ease of solution. In fact, if the distribution of

. concentrations (composition) does not strongly influence the transport co-

' - efficients, the difference in the chemically balanced flow from the "frozen"‘é
flow with heterogeneous balanced reactions on the wall will comnsist of the :
{ fact that in this latter case all the reactions take place at the wall, and

: ~in a "bglanced" flow they are distributed along the layer, which often does

not change the final result greatly. We can sometimes replace the equili-
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* | brium flow over a "cold" wall by a frozen flow over an ideally catalytic
; wall. In this case, we must of necessity set Cie =const (i =1, «o., N)
" at the outermost boundary of the boundary layer when x > x., from which we

regard the flow as frozen.

For such a model of the chemical reactions, in the previous equations,
' we must set Nr = 0 and the problem of determining the thermal flux and vis-

cous friction for x > X, will be reduced to a combined solution of Equations

(2.13), (2.14), and the diffusion .equations

oc L
p(Uox *U@y)+ 0 (“‘{/,’J) (3.1)
along with the Expressions in (2.46) and the energy equations /24

"Pu g‘iﬂ' U 37 %_ {Fuamgck-—ote)gk]* S’va[{f'k*fke)lk]* ay (.7/: /k)} =
=yl ﬂ/f LT S 4‘“’

! s

or the heat flux equations (2.18) in which we must setJQQ"b ( (= 1 ﬂ/ ).

The boundary conditions on the outermost boundary of the” bgundary layer will
be

e - (3.3)

when é/—aoc

Ulgy) = Wetm), HTsy)s Hmcomt, G (ig)— e = comst

Under such conditions Equations (3.1), (3.2) will be consistent with these

boundary conditions.

_ If the wall is impermeable and is maintained at a temperature Tw(x),
.f then boundary conditions (2.65) - (2.68) must be satisfied on it; these :
,:i conditions in the case of an ideally catalytic wall will be reduced to (2.65)"
;,and (2.66), (2.67). Furthermore, we must give the "initial" conditions when

X = X.3
0
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uls g = uofy), H™(zyg)= H'ly), G (24g)=Coly) Cosorr ) (34

which become known after solving the problem of the boundary layer when x <

X

~o°

After solving this problem, we can find the distribution of viscous

. friction stress along the bociy from the expression

_Accordingly, we find

‘ Qu{mza_}
| Cw =S 72 (3.5)

if we ignore the influence of the chemical reactions on the tensor of the

viscous stresses.

The total convective heat flux on the catalytic wall will be computed

from Expression (2. 21), which — by taking into account (2.2), (2.65) and
(2:19) — W:Lll be (the index "w" is omitted)

,.
e i
B F e S A fain oo

i where

P e e e PO,

7 Z__[ Z \)tl Z Q[’?‘Q‘- +6"- K;:{T )

i £y #/

= 4 i, M) (3.7)

For a binary mixture, formed by one reaction,

7.8y O | ; g.-;a.""@ -
Z c;nm/ ’ 6-2 =”-na-9fmf’§ (3.8)
i - e e B TR T e 4 et e = et e




o _ —
. Ril. .., =% Ral = KA _ m2 D ayl
: 627‘ oy d—m,'mf m, *T ay, Kr m;m/ ~‘P“M‘ (3.9)

" [ :
[y

o where the thermodiffusion factor o has a value on the order of 0.1 -1,

The total heat flux will be equal to

m* RaT g (3.10)

From (3.10) it is easy to evaluate the direct contribution to the thermal
flux of the diffusion thermoeffect. The heat of dissipation Q for air is on

... the order of 7000 cal/gram. Then ARAT/m< 73.,a.<£0, cal/gram; when- T, = 300°.,
Therefore, the direct.contribution of the diffusion thermoeffect to the heat

flux onhthelwall-will be significant (on the order of several percents) only

~ for a sufficiently hot jwau.’(TW ~ 20000 - 3000° K) and when a % 1. Since this
effect is proportional to the absolute temperature, its influence will be 125
more significant in the hot regions of the boundary layer. This may lead to |
a significant change in the temperature gradients and the diffusion flows,
but to a weak change in them at the wall. Quantitatively this question in

! an ionized boundary layer has yet to be studied. In the absence of reliable;l
data on the coefficients of thermal diffusion in ionized gases, it is im-
possible to obtain a final quantitative answer. ‘' If the heat flux equation -

is solved for thé function HT, then it is neceséary to\convert Expression

; (3.6)~tq this function.

! We'hgye

s ourl ae, VA A
| A%y TG oy @y /1[9,“ / s éfrf,g__ (3.11)

e e ,-._..._..*.-.‘._.d o bt Ly e

where . ) S

= %_'1 Cre Clpx | (3'12)‘
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Then

Sy
() = e 27 2 Quo T |
# ﬁ,-___“'{’,%o‘/ " (3.13)

Let us'introduce the relative wvalue for the function HT.

o HEHE Ik
g HI-HL amd  §= P H7- /—{w v (3.14)

and also the relative mass diffusion currents on the wall

P

o

Al =
y‘_“’ Ge-Gw (3.15).
Here che'value
T A} ‘_,.-Laazm
A HT= Hg"__ HwT'= %:_-1 Cre (%ke“ ﬂk’w)"' 'z (3.16)

is comprised of the heat which is released by one gram of the external cur-
rent having a composition Cie (i=1, ..., N) with cooling from a tempera-’

ture of Te to the wall temperature of TW in the absence of chemical reactions

; -and kinetic energy of a nonviscous flow on the wall.

Then (3.13) will be

() - (s 520), [an 2 kw(a«e-ckw)%, 2200~

(3.17)

(=

If we introduce the functlon g from (3.14), then the formula for (J%(
will differ from (3.17) (the second formula) only in that ﬁLf’must be re~

’

placed by ge
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In Formula (3.17) let us introduce the total enthalpy of the braking of
, | the oncoming flow (2.37). Since in the cross section x = Xqs where the re-

4 s actions end and the frozen flow begins, we can use (2.2), then

2.

A
aH™= ;Jckeme- o 2 Z c;é{é;a- W ;cke(ake Q)+
He Hw + fj(ca -Giw) ka = A /—/+ 2; @kw (Cke-C‘kw) S

(3.18)

e
e

'

. Then

G- (cp efgt“/w Le- A 35‘;’ (.7k’ /@y/#i}@e WQ]

- (chnd WQ
(Cf }23 }w[.1+é'+ 2 S,’::’,& j (o = }_..kw]A#/ (3.19)

" where

Ke — v/ CQk
¢ = ( "1/(1*;—;_@ o) ) (3.20)

I I s b X e o
. If we take advantage of the concept of the effective diffusion coefficients
introduced for the chemically frozen flows in multi-component boundary 1ayersi

| {
.in References [9, 10].4nd introduce,the/gelatiVe~concentrations
| " ( }:# C'[—CW// (=7 I

; , G- Cov i o, M. ), (3.21) -

. \7[V\I/ (@y/ __C'_.,e______‘_.L‘w ) L::- = ‘CP‘“@"‘ ((=4 .. ~/

,,/_ ' ' (3.22)
glw(gy WJ}W%‘L /(,( /\ .

xf where the exponents }ﬁ must Qe,deterqlned from the actual solution to the

. problem, and the effective diffusion coefficients fﬁ are virtually inde-

pendent of the exponents % and are determined by the boundary values of thet :

concentrations and by the binary diffusion coefficients of the components.

{
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(3.23)

where

* : C
" _LHle
Gr=HE. G =73 (3.24)
Formulas (3.23) are exact structural formulas for the total specific convec—
tive heat flux which generalize the known structural formulas of Fay and
Riddel [14] and Lees [15] to the case of nonuniform diffusion and thermodif-
fusion properties of the components, and to the nonuniformity of their

specific heats. They also take into account the dependence of the specific

; heats and the heats of reactions on temperature.

The formulas in (3.23) are valid both for an ideally catalytic wall -

and for a wall with a finite catalytic character. In the latter case the

' concentrations of the reaction products on the wall C i-= °"’-Nr)

must be known from solving the problem with kinetic boundary conditions
(2.68). 1If we use the conditions in (2.68), Formula (3.13) can be assigned

another form

= — _&h S fp‘T i i
(y?}v' —‘50(2‘)\«/ [A H * *ﬁ‘ﬁ ka 502%') 'ik “, (3.25) "
However Formula (3.25) is less clear than (3.23).

§ 4, PROBLEM ON A CHEMICALLY FROZEN FLOW IN A BOUNDARY
" LAYER OVER A THERMOCHEMICALLY DISINTEGRATING SURFACE
POSSESSING AN ARBITRARY CATALYTIC CHARACTER '

Here we look at the same scheme of chemical reactions in the flow as in :

the previous section. Then this problem will be reduced to the combined
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i " solution of the system of Equations (2-13), (2.14), (3.1) and (3.2) with
¢ the boundary and "initial" conditions (3.3), (2.74), (2.75), (2.80), (3.4).

’ After solving this problem, we find the viscous friction stress from

| Formula (3.5). Instead of the thermal flux, here we must find the mass

% transport velocity from the surface (po)w and the temperature of the surface
Tw'

This heat flux on the wall q, which appears in (2.80), according to the
. definition of (2.19) and the boundary conditions in (2.74) may be represented -
in the form (the index "w" is dropped)

- _ S
B B oy T 8 .
S ' ¥ RaTack B

- -4 247 _ il 54 RaT (:7 +yerC;<)+;>zf ““““—"ZT (4 D

I cf ay K= A a ;

'Ac;,=-— *_9 * () (/ Merd, .., V) Aq=aw—c 1) [c~1,..,/\/)

PR ,

If Expressions (4 1) and (4.2) are substituted in (2.80),we find

r .
)ﬁ@xyx * 9H ?e +86‘AT9+§U’(A+J/R) o (4,.2)

PRSP —

where _ e e ey e 2 oo e

Qz GL'/‘RAT (l'

e L LR G ) ?; RaT G55, (6> c"') o G

It is interesting to note that allowing for the diffusion thermal effect at
the disintegration front will finally lead to a slight known change in the

reaction heats and the heats of the phase transitions, i.e., if we introduce ;4

- the concept of effective reaction heats Qi and the effective heat of the
' ""phase" transition A', which will depend in a known manner on the thermo-

diffusion properties of .the components and their concentrations on the wall,
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o

H

then the energy balance equation on the wall, by allowing for the diffusion
5 thermal effect, will be written in a form which agrees with the writing of

, : this expression without allowing for the diffusion thermal effect. Expression
5 (4.2) for known flows T4 = 1, vou, Nr) and composition of the gases on

the wall gives the relationship between the temperature of the wall TW and

the mass transport velocity (p\))w from the wall. In the process of solving

the problem it participates as one of the boundary conditions along with

the conditions in (2.74), (2.75). However, if we make certain assumptions
; relative to the currents ¢ (i=1, ..., N) and the derivative BHT/By on the
i wall as a function of the flow, following from the solutions to the indivi- j
? dual particular problems, then from (4.2) we can find an effective structural

. expression for the mass transport velocity.

_@_,@Zl‘i’.-—-———* : (5'* 'aq)w }
CHT"ﬁUe(He Hw) TR Ue CH=HT) | (4.4)

?Hanthhe concept of coefficients of mass exchange -

(i=4,.

- ! __4“‘ Z‘w
: G = plhe(Ge=Cou)

vy M) (4.5) -
Let us assume that ;hese'coefficien;s of the heat and mass exchange can be

written in the form

J CHT:‘CHT JOFZ);’%I Ci= Cc'o ﬁe ZZe J/ (5 1 "// (4.6)

Then by using these representations, Expression (4.2) can be solved for

(pv)wland can be written in two equivalent forms

) ‘ U %2"' 862 W/ + Garpe Ue EAH ;; C (Cke-—'ckw)akw J :
(5’)“" A'+Y2+erAHT f:r[,_-,« a‘,,,] ] B

(4 7) o
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% G, /
GG'RTwl"-f- CH;'pe, Ue [AHT— Z 7';7'.' (cke-ckw)ka ]

Qe 2
altyr+ Yr [AH™= g_‘ .éﬁ- Ceve - Cew) QK ] U (4.8)
~ SHT .

The second expression is more convenient, when the ratios of the mass ex-
change coefficients to the coefficient‘CHT vary weakly from the conditions ;

of the problem.

In (4.7) and (4.8) let us introduce the total enthalpy of deceleration

of the nonviscous flow, according to (3.18).  Then

f».-(PU)W'.: Ge —55717"'#/% Ue&rfAH—; (CHT 0« 1) /Cke—C’kW/ Qk.]

« @ 4.9) /28
+)”+3€+r[AH %/j;’ré; i)faze—ckw}Qx_] 1 (4.9) .L._.

M . ,
? ~E6GrT *PeUeCHT[A/’/"E;_ (C‘HTQK 1)(&e-Cxw)QK]

A’% T LaH = 2 (&85, 1) (cue-cun) Qi T

When the linear approximation (4.6) is valid for the coefficients of
heat and mass exchange, the values YHT and A (i=1, «v., N ) do not de-

(5

pend on (pv)W or on the blast'”’. For large blasts YHT and Y4 (L =1, couy

Nr) will depend on the blast, but more weakly than the coefficients of

heat and mass exchange themselves. In any case for known YHT and Y4 (i=1,
lll,Nr) and Yo Expressions (4.9), (4.10) are exact structural formulas for

the mass transport velocity of a material from the body surface during

" thermochemical stationary disintegration when the absorption and transmission

of the radiation in the body may be ignored. Although from Formulas (4.9) -
and (4.10) it is impossible to determine the mass transport velocity prior
to the actual solving of the problem, nevertheless they are useful for -

evaluating (pv)ﬁ. In fact, if for the numerical values of Ygs Yops Y

) For- sufficiently small flows the linear approximation (4.6) is
valid.

t
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(Li=1, s00e, Nr)’ CHTO, Ci (i=1, ..., N), we take those values obtained

| from solving the simpler problems, then with a specified pressure and com~

 position on the wall, which can be determined approximately, Formulas (4.9)

- and (4.10) will give a value of (p\))W as a function of the temperature at

* the front Tw' In fact, however, to compute (pv)w, we often use the concept
. of effective disintegration enthalpy which will be introduced in the next

| section.

§ 5. DETERMINATION OF THE EFFECTIVE ENTHALPY OF DISINTEGRA-
TION AND ITS EXACT STRUCTURAL FORMULA FOR A CHEMICALLY
FROZEN FLOW IN A BOUNDARY LAYER '

Let us determine the effective enthalpy of disintegration Hef in the
following manner
L (Pow (5.1)
i.e., Hef is equal to the ratio of the total convective heat flux to the
nondisintegrating surface, having the same temperature and shape as the

disintegrating surface to the mass transport velocity.*

In (3.19) let us introduce the coefficients (4.4) and (4.5). Then

,(@)ﬁ*ﬁe%fﬁ[!- ;T(C%%%— ] foce- c“””Q“”'] (5.2)7;’

The symbol (0) over the brackets indicates that the expression must be com-
puted for the mixture of gases forming with flow around the body without
allowing for its disintegration, i.e., the sum from 1 to Nr; for example,
in (4.9) or (4.10) there will be contained terms which correspond to the
products of burning of the material of the body, which will be absent in

" * Translator's Note: There is apparently a mistake in the original text
as the meaning is not clear.- '
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the sum in Expression (5.2). Thus, the heat flux (5.2) for this problem of
. disintegration is an imaginary value. Allowing for (4.9), (4.10) and (5.2),
. we find '

er

’\":"Hef;:“ 2 +]” JurdH[ 1 - g:l 77“9‘: -j).@ﬂ:&_w/_é?i],gr. 6

i’ s

E"‘-%AI"“JQ+}C,;-AH[1“§(CG;:% 1)~ (e CMQk]t (5.4)
where

Ml Ql (Cee=GCew) 0“.] C

[1 Z;Q,T(QK~ AH

j_Z:Z CK ) (cxe - Ckw) QK + M&z—j__ < ’ (505) A
Cr 62,4

| analogy (3.22), then we will have

° o gpwaHT o ®° g e
& ==L£w ) '_—Z.:iw

‘CHora aAQ —&%l;ﬁr CHT- (5'6_)

< T gy y (SN
If x~%|, then Pyr '_"1". If we approximately set Oi ~ 0 (1 = 1, cess N_ )

S __4_) .

we find { 1

Hee = 4’ + g aH L1- J (L5 1) (- o) S5 TE 1)

K=z

where

Y

(Cee- CW/ G ]

= Lt ;? (Li-1) | | ;
C 4 - ‘- Q{s—_%'&?u 2E genl’ (5.8) -
g (Lk 1) aH -+ Wﬁ‘(/eﬂcg"rét{ ‘

With intense disintegration, when the blast is so great that we can ignore
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the convective and diffusion heat transports(6), from (4.2) we find

o P VT
(pv), = ~E6~1 /_ @ ) (
@ 4 a2 A AT KZ'! a‘ ak (5.9)

- where the value Yr is given by approximation (2.82), i.e., equal to f

R .

)/Kr_ iek.‘-" %W
Fo)w

‘and is the heat of the radiation energy, absorbed per unit of mass of the

flowing material, of the disintegrating surface. Let us call this the effec- .

tive heat of absorption of the radiation energy with flow. Then with intense ;

disintegration

(5.10)

= Bl (ahp)

g —geal? "

thhe quantity 9%ﬂu-g@k74 is the radiation flux incident on the wall after

; subtraction of the reflected radiation flux from the wall without allowing

) for its absorption in the boundary layer.

Formula (5.10) contains two unknown quantities Tw and Yy Their deter-

mination is a fundamental problem both in theory and experiment.

§ 6. PROBLEM ON A CHEMICALLY BALANCED FLOW IN A BOUNDARY .
LAYER OVER A NONDISINTEGRATING SURFACE HAVING IDEAL
CATALYTIC CHARACTERISTICS

This problém can be reduced to jointly solving Equations (2.13), (2.14),:

(6) In the presence of radiation the law of decrease in the convective
and diffusion heat fluxes with flow has not yet been studied, but from the
general arguments it follows that with a sufficiently large flow these
fluxes can sometimes be ignored in comparison with the radiation fluxes qw

reaching the wall.
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E (2.23), (2.30'), (2.46), (2.42') with the boundary conditions and initial

“; conditions (2.57), (2.58), (2.63), (2.64), (2.65), (2.66), (2.67), (3.4).

In the case of a chemical balance in the flow for the conditions of
' balance (2.66), (2.67) we can consider the existence of Nr integrals of the
basic system of Equations (2.13) - (2.22) of the boundary layer. These in~
tegrals can be used to eliminate from the energy equation (2.41) or (2.42)
the N dlffusmn fluxes /20 ¢ U WA Nr) and Nr derivatives of the con-
entrations of pg 1A=1, «.., Nr) reaction products. For this let us

. represent Conditions (2.66), (2.67) by the molar concentrations

%/
/7 ..,9_’, ( Ly ey VeI 6.1) /30
/—/V’H.l . .
; The Saha conditions (2.67) are a particular form of the Guldberg-Waage con-
. ditions (2.66). Therefore,(6.1) will include all Conditions (2.66) and
. (2.67). 1If we substitute the solution into Expression (6.1), they can be
' transformed into identities. They can therefore be differentiated. If we .
E'take the logarithm of (6.1) and then formulate the gradient and the isobaric -
. equations of Van't 10££<7) for each of the reactions (2.1)
ke QL el el ke
" T RaT# en ] ; ““mole vt L0 4 v oy M/ (6.2).
g we then find
g _Z”’ D e — S 7,&,7‘+ hvlps
o VX x v /z T (6.3)
. Jamerd g
« M n For the ionization reactions the equations in (6 2) Wlll differ' -
”[,& only in the form of the right-hand side. : | " : , . o
T T T T I —

—a SO - N U I
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If we substitute in here from (2‘.44') and assume that the charge in

the reactions is conserved, i.e.,

T =0 (trhu M)

. Then

(6.4) .

aa&/(ﬁ" Ja‘ ) ))Q/Z:akafc/( _f’ ) R T ey V&—T"WV@L,D,

' where

H
H
%
i
i

1
H
{
3

{

o B V. "‘0 . A//
WL[ m /v%;.de/ . (( .I"..

Let us 1ntroduce from the definitions in (2.23) the diffusion fluxes of ele- :

. ments %’ Qaﬂz-r/ /V/ 1nstead of the diffusion fluxes of the base com— -

ponents (7' (‘/-z /\/f‘ ,«j ) .

7 7 Z % (J Muz. /\// (6.5)

LM_,_..‘

We make this substitution,since the fluxes ﬂ_( /"'"M"é”-‘/ A/ satis~
fy the homogeneous equation(a) (2.23), and in the case of a nondisintegrating:
wall they satisfy the zero boundary conditions (2.65). Therefore, we can
expect that they will differ little in this case from zero in the flux. When

the mass (elements) comes from the wall, we must expect that 7 *_(jcﬁ:é +{..., /—J)f

varies _mqre smoothlv in comparison with the fluxes 5{/(/'/1/'(*/; <0y /V /

(8) In this case our arguments are not confined to the framework of

: the approximate boundary layer th”eory but have a general character.
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since the chemical reactions directly influence these latter. If we drop.
237(7=Nhlu7/%/ from (6.4) with the aid of (6.5) we find the following
linear algebraic system for the diffusion fluxes of the components of the

reaction products

’ZZM’L{; g;; [z/ f 9_‘%&“[9 T2 - Vkeag‘)f‘

m Kd Jottt] Eerittd &%
Z_Z Q/ f (\)VAI/ +\)¢/A/K) Aax] KAT V&‘r—f
/:A&rl e= / T “"Wf*4:*‘“k/wJ

4 % \)z‘ Ak = ‘
“+ Z m (A[/+ -—-——L——L“‘?,‘ Z Vie A/e) o
J el ¢ _ e=neef - ;
. ‘A{I‘-‘f -._— {I:— __:“‘M wf

This system can be written more briefly-

o melper, o 4
A T = R8T L W (e e

where _
e o M. M
; L4 N QL - ¥ az‘d 2 ) At +
=) S ’/—/'ay [\)/xe vneag)/aﬁi;w g;v +/2_:W//7 ‘/
(t'*k /=mu Cand o
RaT :
+ oy 9!/)- dix Q= ar —fGZT z . :‘,,'(6.7)_ :
e Cz/ Ay +Z—-‘3‘L—% Z \’fe“/ (/K= > |
/ _ gc/wh¢£ ‘;‘m___M_ﬁ
Let us show that the matrix ”}40M7 ¢ LR=d ., N is symmetrical(9).

For this let us transform the first term in the expression Aik

) This proof agrees with that in Reference [16] where the effective

coefficient of thermal conductivity was computed in a stationary.chemically

reacting mixture of gases.
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1S U (e - f—(;: DLZ)—-

‘ i /=M esiietf /
3 M
== -—%—4— — ‘ =’
} él' 2 Zf [ (1& Vig/'— Ve X ) + {\)xe-z; VK/ xe)]
j =il et - E
& X (\)x/'xe—-\?xea:/) Vo= Viez)__ . IR

’ : d = Net] E=m% +/ e

o =1 ML M Qujzee~ Veear) (Vij e~ Vie &)

o e e e e

Then {“‘““ = ) T T T

(M.u —Vxe s ) (Ve --\)lea;r} _f }

v/ll( =2 Z Z Z\/e I e

()" j=me e=Nite : .

g 1)t/ VI?' .? A/& "' Z (QQAL‘/'H)/ A;g/)-- AJK

S

e i

J-MG[

Hence,it is immediately clear that

% K= j
J‘“ (" ) (6.8)
We can find Ai'
: + — . e T
R TN e vernt & Zf e nie.
s - Zu Ak, 4 g veeay)”, J __4-—7‘
S “Z'-L " z./é;u/ -:L;Mu/ e * Zae /ezz;/ e v o%
o 4 : A A j e Ve ) M: Le Aje
» Vidiy=du=g) - 'y ; -+ w -——4——+
‘ | R 7
~ . vy 0 M
f . Z Al}f ( & +\7t[.x«zv - Z_ T A.(‘tc.
- aeoy . o
Jeveel P~

Thus, there are altogether 1/2Nr(Nr + 1) different coefficients rathér ‘than
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er. From the system of consistent linear equations (6.6) we can find Nr

diffusion fluxes of the reaction products

J%{j /4’,4, ﬂu'-z lmc,?)l,#{[f{ sa e 7?1/\/1-, ;
_Z I Y #M,.z . Fwis Qe sl . - Foioh (T 4
) o - RaT
T 7 e (6.10)
§ J%« //m, 1414-1 Z /,}";; ﬁzm... {41""!- .
; - J%wa Faa... /¢yu-1 é‘:icm/m/ Awise ... Hwewe .
LT PETAT . (i

The remaining fluxes are found from the equations in (6.5), the solution of

_which gives

,I 0 R \)Ij ’,..: ..u«_,. ;dﬂgJ. p— e .A.\,.j_....ﬁ_h . e 0; 4 - \)1 ..M .._...4_,....._. “l)M n —— ﬁ_.“_:
J 7 ‘ _7* viy oo ) %/
: '"iQi ﬂu = ,:q_(ﬁfq_ : ' : éd /4,, . ﬁ_tﬁ/t |
! S ' o . s s @ @ < e
1 mMzQﬂQ \:4/\/‘1_ e . B . . :
T _ VT f
R .2{’_. = e ot /‘MNI ﬂmx . ./¢Mr./|/z
o . Ket Il Ay o ) +
2 . . . "' . 7. o [ U
| R _ R/ (6 ll)
Lo T ey (= ey ”) :.

This heat flux along t;he y-—axis w:.ll then be f "0),;‘5’

[ —
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N a ’fv

g _
S RAT AT m/ B ' T cr Y 7] §
; T . 6w ,‘ 1 e OV S
: 6 ... ... t ﬁ e 7411 ‘4
m Q;t’ HAut St /=MH{/MJ o SN 6.12)
Ce e eee e e e / 7* .
; mm&,:f, At ... P ate 56T 12;?‘4/ Amt... /MMK . -
_ ’ Det /] al —
}- 2 'ag ¢ oz, PEIAT by TAT ]

—'R'\T —N'L{l MJ ,

“If we ignore the "diffusion thermoeffect, then only the first single term re=

mains in (6.12). The group of terms standing under the .y derivative in

Equation (2. 41) is written by allowing for (6 10) in the form

ﬂ'(?y Z; QK(X( +.RA -M¢+1 Z/ Aefﬁ'ay / e ([j/ -+RATZ ) ————— (6 13)

| Vhere R F e RV ~

S ”_j’"" M FELT (6.14) 122

f i g S
o ' ' Y . 0 Q.. tmwelae

/ OQ ;1101 ..Y.J/«nm@@ " . ¢y -’_dﬂ- ./4!”?. e

L L e o ' (6.15)

%»f'==__1;» nmmmlzww .A&Q! 'Jdvklvb ‘ o | Ch%[ ’vJﬂwl Ce . v4kkﬁ“-.:‘f;

' The coefficient A is expressed through the expansion coefficients in

the Sonin polynomial and is finally expressed in the form of ratio of deter-
minants, whose elements are integrals of the paired collisions [8]. Even
if we ignore the diffusion thermoeffect, the contribution of the diffusion
fluxes of the elements to the total heat flux may be significant. Even when

il?,f =0 (j = N+ 15 eony ‘N), which will be the case in a stationary chemi-
A
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f i cally reacting mixture of gases or in a mixture with homogeneous coefficients
of diffusion with no transport of the material from the boundaries, Expression
(6.13) will generalize to the known expression of the total heat flux given
in Reference [4] for the case of allowing for the diffusion thermoeffect. Ifi

é we use Expression (6.13) the right—hand side of the energy equation (2.41)

‘ can be represented only through the température and diffusion fluxes of the j

0

elements.

We can prove the folldwing argument. If the coefficients of binary
diffusion are identical for all components and the problem is solved under

boundary conditions (2.65), then

G=o  (j=Me..,#) (6.16)»‘%

-

The total heat flux in the direction of the y+axis can be represented

“in the form
#j 7 /
~M¢+1 d 7

| Hmge ;‘zm-% e |
| - .;chg SNOLY SRR

Me+l

Then from the preceding argument and (6.17) it follows that if the coeffi-
cients of binary diffusion are identical for all components and the problem
is solved for boundary conditions (2.65), then the expression for the con-
vective heat flux in the direction of the y~axis in the boundary layer
agrees with the respective expression in the stationary chemically reacting .

mixture of gases.

; In order to finally write Equation (2.41) in terms of the temperature
", for a chemically balanced boundary layer,it is necessary that the deriva-
i tives of the function H be expressed in terms of’the'respeqqive derivatives

of the temperature. We have
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dH~ q"”/r'za”/c“*z;— (§¢= X )cf/ AT (6.18) -
B et

B From this expression it is clear that in turn it is necessary to express the

partial derivatives of the concentrations Ci (i=1, ..oy Nr) of the re~

~action products in terms of the temperature derivatives. If we drop the

% diffusion fluxes é? G-= N+ 1, cens N) from the Stefan - Maxwell Ex-

pressions (2.44) and (2.46), with the aid of (6.5)

i A6:19)
A , |
¢ B - A '
H;&{'V‘& ——4—- ¢ + ng[ +V&7—Z e V&Ibfx
Mt
; where
?" {h . W. i 'ﬂ"
; ;Agc'_}"é, %/ At/ @.Z(Ex %}&AKJ i
. o |
f e ;&:*FA": Z \)e/ A*g* ’ Z*» Z. - ¢ Zi e‘(ZK | (6.20)
oA S S
f ./‘T'f . '—-i—ec*;_;&ek'f;‘ (l,/==1, , ) -
R e
(G ve== g ) Frogr ) A *.;IAV St GT S ey lp T
’ . =_L - R . , i+ ’/
- - { -‘ - o '/» S A6.21) /34
where

zr..A fvg,ac,,; z:c S );_;W: {&-ﬂzwz

.) i . ';‘___;_;_.,.,

SO ﬁ;*= o ~f& '-(a *,}’}Zcueu (6.22) -
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For now let us compute t:he intermediate values using (6.10)

Pk P

. 2—; Aie me™ U,, (MQ)V&T e Cg[&/} .

: T ~x T o ~_

' where o '/-“U. v Aim .‘ o X ... Bire
L ComQl Ay e~:f¢ﬁ§ﬁ4‘ | A "?41”&

(6.23)

e

| T A
i YR . 1 Akt . A
g1 .,,Q \4 R (5 R 7 .

e e N

“.;”;*"»@‘ = T - =
D ,Qg"y 9 qu-uﬁna Q}V&.T-W‘ﬁ/@‘gj |

k- L I o t'_‘-:" . aﬁ/’b § -%—,!AM“‘/ %. !
| ol T e Y Y
] ) ,mlaj . e .j-{.{ e oo ﬂj/\/’_ —
. e i(6.26)‘

| . %A/@./V«.

: mQQ_;H,,, : o ‘o i
LJ? i e A
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(G=1, ooy N ') However, we can find the equivalent expression for VCi
(i=1; «ouy N ) in terms of VI, VP and Cj* In' fact with the specified

field of element concentrations c

68

3

* (3= N + 1, 0ees N) the composition of

e . — . ", | :
Y Qx};{ mp GAY e Qmjg "y GAm) |
‘;C'_{/' At A : /35
-. CM;/' .,4,\4,_1 o . | Bt _____ e
[:7/6' % o » 9¢//°’¢/7 e
Using (6.21), (6.23) and (6.25) we obtain ‘ R
o L _;_,* B
f& VG = L‘J(mQ Q)T 2;;*1574 (6 )7
k=1 e / ? y
th e /A
. G " ' |
Z o e (MQ}V&LT g/j‘;/wic‘ljl( J) g : . 7
SR < . ” (6.27)
pred ) ~ Mo ™ ﬂL f : ;?,r = ‘
: 7 D N Ry g v
,+ Z Z cAy gt V&T@Z‘ « Z‘ TV _/be-x. c'"ff;
. [- 4 /:/\/1-'1 IJ —-'-»># Co R
= ApTe 3 BT+ DVP
" where
TE
u/m@'a) Zam‘(m@/ﬁdc‘Zz i
B/rry DJ(cGZj Zaﬂ,(a/)—f Z:aAq | (6.28)
@,0 Zay/:*‘ ‘ "
We have expressed \7Ci (i=1, ooy Nr') in tewi-ms of VT, VP and Z’*’




f..

. | the gas must be found from the solution to the transcendentdl system of

equations
_ N& & . ,,;_.,,*_.,,“,. .; SR e e s ,L».,.f:f,.u;
9 KZ:\)K/ =G (J" Mett, .., "// ?
= . : 4

Lt ; Gy (6.29) -
-0 -V . £3)

{/7 \’"ct‘é Kni (T) P Ew™ (=4, Wi ) =

1 whgre

B I e - [UET e e e e e *‘ . L
= (124,00, & Ty Q,vw/j (6.30)
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. If we take the logarithm of the second system (6.29) and formulate Zthﬂé‘j‘g'fé&i‘éxif;‘

¥

" we find

N

T ‘-é' Ve Z Vs V=c‘" =T 'Q‘_‘T &T’f‘ \)t Vg"—/b vem Z V& | (6.31)
z’ C‘ J-/Vw.t % j
If we eliminate VCJ (1=1, ..., N) from these equations with the aid of the ?
first system (6.29),we flnd the consistent system for determining Ve, (i=
l, 2990y Nr) :

R &T-» 3 V&P
) BuV& = (’i’" v '”) Py’ KATV i
: 'K'"‘" B /-l‘/tfl | » »(‘z /\/(,} : ‘ ‘;
whereA o
" Vi & Yyvg
Bix = Buc = ﬁ })“/ ( X - —-W m} _MH;"L‘?VL' \)L Vi G s
(Lwc) s ” . . - 6.33)
R = Vi L
. B o c‘  Jamerd 9 . ‘wwk,w-M
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' From the system of consistent linear equations (6.32) we find Nr gradients -

ﬁ VC i=1, cens N ) in the form

L —— f”ﬁ”"=;”7 Fortmes A == e ‘ T
. : ‘l _v . . 5:{1 B!‘ -4 /ZA//‘f \)y Vg B_{ ‘.4.1 e W B{ A/'L ) ‘ §
» {! . . bhus BM‘.H =Z;+1 \)M V? BM id ... Bwwm ;
I | oot Ay 1] | JCEDE
; 'Bu e B{(‘-{ Vy Bil:*.(... Bz [ 4 Bu... Bl(’—l,-m,t'@z. Biid . .Bime é
! Tae e e e e e Bl BRI SR . A ;
[ Cee e eent e e . !
A BM/ Brat-£ We Buritl.. Broc s . | : |
) Bt Buni-t - ‘
+ V&Pv . R et wi-l Qi B, By V&I/T

M”"""_‘/ | QEIAGT AT

Qy % —'))lm (.{,.., ) - ;

,{wwh_e-«wip~

:

The gradients of the remainlng concentratlons can be found from the first

system of equations (6.29)

T \M/ VA%/ S o 94[ e VA&/:WWV ‘i§§
S A i f\)z/vg* B . 31/% ' myQt Bi1d ... Bim ;
o W 8
e " Co ' 3
IR . };\Tm'vﬂ‘* B/M.;. Buwewe | 0 e e e 5
%W V9+ —§=t /’9 . e | mm G Bmi:.. Brers vinT 0
S P S Det || Bl S PR BT RaT

o e W Ve
! ' -

|V Bar . Busd
S =7 AL

Formulas (6.34) and (6.35) differ from the respective formulas of the theory. :
of thermodynamic computation of a chemically reacting mixture of gases for
specified P and T, in that here we take into account the change in the ele- .

mentary chemical composition ‘and its influence.on the composition of the gas,
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“i.e., here we look at the so-called open thermodynamic system, when along

.\ with the P and T determining parameters there are still the»Ne parameters

L
.

 Then from (6.18), we find

JA—

oy

‘ R .
\CM*/ PRI C:} /

Using the Solut10qj(6 34), we f1nd

:““Z Q 'a i D/ (VL/ Q‘) 9? D(mm 0) 9? @9

RO _J

Lol B =]
Y- 6 m@ﬂw ﬁ/%W)%;

vhere

b
3
]

Merd

eﬁ__jf
y C/’ By /Z D‘/C/,Q)ay

' | boundary layer may be written in terms of the temperature. However,for

i~ convenience in the future,we retain the convective operator in Equation

L

(2.41)‘without change, but convert the'right-hand side -

it

-Mul =
' |where
o e aa [T o e @ﬁ’«i*
| " ‘ v Bu ... Bun S b Bu . .51"’", -
3 e e e _ L e (6 37)‘w.
:‘.‘D-(\T,-- = | == Q= ' ~
[ gyt B89 T g

P Using (6.14) and (6.38);7tﬁéweneré§>equatioﬁff2}41) for a chemically balanced | |

e

H
|
's
i

fuaz(/‘/“/‘/e)"‘fv'ay(H"H&)’/'Z {f%?x[(g 9e)é']+f”‘6y[€/ 9‘)@]‘

Ne+f

y (TR [(ﬂ’*"“)ay Wiy (8L prif e 0) ] o

n




i The energy equation (2.42), written in terms of the enthalpy, will be

,ow o5 (H-He)+yzr(H-He)+Z éu (23 [(9 g/e)@]“‘f”/[(?/ /e)é]“ay(y 'é}

9y{9o[ay(H-He)+(6‘-z) (“‘) Z @esWWH* 6D’
(/11* + A -+ + ._/;
AP G R ALY

where the temperature gradient is related to the enthalpy gradient by
Expression (6.38).

After solving the above problem,the friction is found from Expression
(3.5). The total convective heat flux through the wall, according to (6.17),
© (6.15), (2.65), (6.32) will be equal to (the index "w" is omitted) '

jz.m.«_ 8/—/ /2-/—.2»& _ﬁ (6.42)

M) -“-MT _ﬁ‘?“'&‘“*’“) ¥T e oyt 4oy

[N

where g is the relatiVe total enthalpy

92 H,_C—Hw ]

The transport ‘coefficient of the total enthalpy (coefficient of heat

transfer) then will be

L %) Z'ffl%w#
1ACH pgucAH - sz (éf)w

ot et o

172




i § 7. PROBLEM ON A CHEMICALLY BALANCED FLOW IN A BOUNDARY
: LAYER OVER A DISINTEGRATING SURFACE POSSESSING AN -
IDEAL CATALYTIC CHARACTER

In this case the basic system of equations will be the same as in the -
preceding section. The boundary conditions at the outermost boundary of the
boundary layer will be aléo retained as before. On the wall the conditions
of attachment, Conditions (2.74), (2.66), (2.67) and Condition (4.2), must

hold. In the case of balanced conditions on the wall, the diffusion fluxes on

it may be taken from the expressions in (6.10). Then Condition (4.2) is: 138
rewritf.en as '
g ._m*/;,‘}@y ?e +gcm7‘4i,.yzr(4 +{,Q 5 ;H ‘ A? )__ @
°i

.

In the process of reaching a solution, Condition (7.1) or (7.2) must -
participate as one of the boundary conditions. However, 1f it is possible

to represent the coefficient of heat transport in the form

E CH CH— Z W},;_’ (7.3)

where CHQ is the coefficient of heat transport in the absence of a blast, -

' then.

‘ - e gy L gGATH T
(Pv)w"f’e ueCHAH _.{"»‘ 'Fpg_‘eCHOAH-' L A A n Z ""J‘A (7 4)
1 v +}fg 2. J"""H-i_ 9

[ —

F o et e e e e e e ——— U SRR P S,
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! E The effective enthalpy of disintegration in a chemically balanced flow in

the boundary layer and chemically balanced reactions on the wall will be

n = A TR (7.5)
-, {4+ Hfe-g6tT.
o CI%)w

It is interesting to peruse and follow the difference in the values of Hef

1 given by Formulas (5.3) and (7.5), which were obtained with only one differ- -

ence: Formula (5.3) is for a chemically frozen flow inside the boundary

layer and Formula (7.5) is for a balanced flow.

~ §'8, DERIVATION OF THE SYSTEM OF INTEGRO-DIFFERENTIAL .
EQUATIONS EQUIVALENT TO THE ORIGINAL SYSTEM OF
BOUNDARY LAYER DIFFERENTIAL EQUATIONS

In this section we shall derive a system of,integro—differential equa=-.; -
tions of parabolic type, equivalent to the original system of boundary
layer equations (2.13) - (2.22). Onlthe basis of this system in § 10 we
shall develop a method of successive approximations to obtain precise solu=-
tions to all the problems formulated in the preceding sections. On the
basis of this method, we can also obtain approxima;e soiutions (the;first
two approximations may be computed anglytically).
Let us introduce the flgywf_uncjiéxijﬂ(}é!i}?iﬁ_"th_emﬁé_tjfa:lgﬁﬁﬁrfér_“;

£

-t .
v V

- e

_aﬂl' ; (8~1)

_ .
Ko 2% _ ,
P B, ke 3

where the primed values denote the redesignated variables which appear in

the‘system (2-13).- (2.22)0

" The equation of continuity (2.13) is satisfied identically, and from
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3 ; us transform the momentum equation of thus obtained (2.14) for the fflow

(2.14) we obtain a certain differential equation for the function ¢. Let

, : function y(x', y') using new independent variables

. _ SR e g ;
amx, s Lo, q= W [ey)d gy

; and a new upknowﬁ function £(x, n)
Wixy)= Stx)fla,n) 8.3)

i
{

|
Q1

i

!

i
!
i
i

i
4

where §(x) is still an arbitrary function. Then in these variables Equation

(2.14) will be

é‘:. ___(;';f+a“_f)@~ 6"‘ _(ﬂ-u)v‘t(e'z ayﬁ’j’ ) (8.4)

whére
e T S
e B, wt e, cesfidpdine e

It is natural to also write Equation (8.4) in terms of the variables

$= _Z;Hw So;,:“_u;;;fko/a[ ,T - n,l (8.6) -

. ,,wa...__l

in which‘it assumes a simpler form

diulte (f‘“u )*an /f "/’ﬂ“’f’”’

é-: (JJ'Z,L +a“ s ) bn =0 ‘(s) (8.7

If we set §(S) = Mﬁ?f, then Equation (8.7) will be written in the Dorodnit-
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o syn - Stefanov variables in the Lees form [15].

Now let us integrate Equation (8.7) with respect to the coordinate n,

from n to », and use the asymptotic function u(s, n) and f(s, n) at infinity
[5] '?_)67% -0 , f(s, n) > n - Y(S), (1 - u)f + 0 when n + », then we find

" the following integro-differential equation .

{J [(1—“)Y+A(u)]+(f‘1'[(1-u}as asA(LL)]'f'O/ﬂA(f)*
’4 + o)V , o

(8 8)

where

S —— PN R

x PN Y . dllle
ot [uewdn) ar[ e, g oS e

, | The equations of the component diffusion (2.15) can each be transformed

respectively to the independent variables

i
!
!
|
H

5‘ ‘ A o ___.d‘ " V’ ; | (8.11)
! [ - e o=, = L]
(KL, M= Sira 8 f o (‘ j’ i i i

et n

. and to the unknown functions (the primed values denote again the redesignated -

|
i values which appear in (2.15)
H
i
i
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‘1 ~ (.’:"[m;/) =G (x, n) _ . 7/(0951}" e o =

derx) . ;
Y y') = J‘(m}f(x n)=Si(@)f; (=, %) i) = e m, ne)+ / @10

%(acm)~ fw(xm)dnc ‘ Uiz, n)= U (x,ne), o"fwaé—ﬁw

| (u(x,y/-i Uewi (z,ne) = Ue u(m,n)  ~gua*= (Stfe)l + 6w miw

' where Gl(x), 62(x), ooy GN(x) are arbitrary functions. Then the equations

in (2.15) along with Expressions (2.44) and (2.46) assume the following form

v L 2% _ wi sa
G ““"fff/ o ) B A s e = e B e

e oo i+ < e e Aot o e bt e —

Q—I St ’y—' a‘.{

) .7.{_ |
| ‘:f a““f"“z%&/ @ %%‘*fcf‘f *“‘?9,"‘ L

, N L SR :
.” * Lo , oy AT =
o 4y = S‘f/ - gzrf,“sk/ (-0 U e
Ly d fma L
L . )P ‘ L ;
; _.'_«,.__'.(‘//--./"1’ A/) i % |
N N T 0T
‘ A1 _9._CL- = ik ol d T
5"" Pni /zla%/‘g"o' C };‘2"‘9 /#‘d“ *E R
.

_.,(,/ 5 - Z x«SkJ( m)-/e —Jr}Zx«.S’k/ (e“-?)
N 2:.r Z:;ck Z:k:“'[é "}C)Z:EEKEK;Z:K L §
| R T

(8.14° ) 140

}? For the case of a mixture with identical coefficients of resistance aij Ex-

4% pressions (8b14) and‘(8.14') asgume, respectively, ;he form
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 fmll g e gaent S

j f‘r(: on +3 T "9 s (8.14")

| Lo grd gy p Yl gtegy 3

L@ o 0 @ IR (814" -

or ‘

o _ﬁ_ aCl ce . Pl T (8 1419!15 }

_z‘ S* P T ogE KE S o

i = e . —— M
i Let us note that here we do not assume that the molecular weights of the

components, t;heir coefficients of thermal diffusion or charges are equal.’

| In order to give to Expressions (8.14") the form of the Fick laws, ;

] : ’ ~ :

;“"i.e‘.', a form similar to Expressions (8.14'"), we must introduce the concept

; of a molar or numerical velocity v¥* ‘ ;‘

| = J | T

| B

' and molar diffusion fluxes

e e d . a) |

\yz gnz{m— vt (i Gen E

i T HT o 4 |

A

Then (8.14") will be

S e e e ;

_ ~_&§1., - % I . Pbnl , » g

% -If -we-introduce a new Schmidt number I TS -,X

"“ i S‘ﬁa m‘g*‘ myl Aa{/o t
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then the expressions in (8.14") will éssume the form of the Fick laws similar
to the expressions in (8.14'"). E

Let us return to the general case. It is natural to write Equations

(8,13) in the variables

$= g et s @19

in which they assume the simpler form

(8 16)

y 9% vusrr (s
d' 3 as (Jd’f { ”ﬁ)?m T owm T Pt P U™ ‘\'-'f'f.‘".;,..i

?
At the outermost boundary of the boundary layer we shall have:

ds T R puepa St oy ‘ (8.17);

Then by allowing for (8.17) the equationé in (8.16) can be rewritten as

“ e o iy 7

é?‘“«‘bai(cf—c'e)‘(é?d?y _‘f‘a )or; (“ G.e)"‘ 1_ (8.18)
Wc ! :
; : ( S i) m«

Let us integrate Equation (8.18) with respect to n, from n, to © and use

the asymptotic function C ,(S) - 01(88 ni), fi (s, ni) at infinity

&@%W%@bf“m)i, e
as m)-v; e —o f(s ru)-om Y’(S),- (e~ Q)}Z ~0 for‘ re—r oo

an I -

then we find the following system of integro-differential -equations
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L

z-%vo’o?(s)ﬂac—a)%+d(¢)7+d~ﬁiA(Wf)*57"‘5 ‘”W’ (819

z where

el (ien A

; A(a) /(aa a)udnt ez —/,,,,f,,uem“ ( ,

‘; - Wee U¢ ol (8.20)
A(Wc)~ / (ﬂ'e feue) n :

! If we substitute the expressions for the diffusion fluxes (8.19) into Ex~
pression (8.14) and introduce into the i-th relationship only the function
/] 1 and the independent variable n i by using the identities

i@c*‘?)(&/r’;’) )+ A(g)+4 854\(9} (98‘9)(5'%*-0’“5—-)-/-(5"' "’(9)
Lo o +d“ A

¢ where

' A(z)(g)é4(‘{/‘_6/@))“5(&.“‘,,)0,,&,,)*.:. t.-_.-c;,(s@/} g(s "*"4‘) 9 fs,m}
RO

S, S

;z we then find

{M-J,y/s)): {m, [&,g(ae-a) aa/a(ge—g)]v’z * iy [:S,ga(a)—
- ‘904‘”(9)]/* 0°J, (s LSy sy e T3 *""5‘99@*—‘*)"

(8.21) .
-&/ C: os A”(g')l}'/' fﬁ/% m/CS'VgA(W) dr/ cd fW/]"‘J‘Z n«/[‘g‘.’/?me"a}- ?
| et +¢ec:€—-7-' R T Rt A
{ g o N
| where
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Fad W e Wee s .' ' ¢
a9(g)= [ (ge-g) o’ ‘”(M{/)"n/‘,( % fe‘u:)o"‘.,‘_ Wb 8,22y

' When all the numbers Sij are identical (the resistance coefficients are

H

4
3
4

i

identical), then from (8;21) we obtain

].,ec;ﬂ dia'(s)[(cze-czm fA/c«)Zs’w“*[(ae w?’é‘ * b5 4»@73’ * (8.23) |
4 0 e AW O me—ce/“’wé’“‘fa"f %&ZZ b S=8 o

Now let us transform the diffusion equations of the elements (2.23)

into independent variables

:atl=9‘1 7 '? » dj é- "gz—;: (331’/‘&'&-4,‘.-” ’() (8.24) |

and to the unknown functions L :
—— o I Sy y} ﬁac)f@/”f} [x}f/ (% ”// ;
y (x #) [ac n/) “(x“7’

G (o) = [ty ) ol 5 (51"
f/ (ac,n;} = f/(""/“l) *ﬁ“’ oc,’y /Ly s y;y* Lle'c ;’w/WJ' “txnj) 8. 25)

where GN +1(x), caes SN(x) are still unknown functions. Then the equations |

in (2.23) will become

o T s e

0 :
0”%9&9 (fd’f}-ﬁ%‘ +/Wf~6é't “‘;g“-o (/-M*/,--- "’/ (8. 26) /42

In the variables
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; R )
R - ak ’ . N
8 - the equations in (8.26) can be written more simply

‘5’95 ’fd’é‘/"‘ﬂ‘eﬁ') '“0 /r/’”/‘*("' % (8.27)

[T

Let us integrate these equations with respect to nj from n y to « and

, use the asymptotic formtilas

A

E - 9 - . * . ‘ .
ur (s vy)—1 , 9k e, (98—9 )ﬁ e when 7%
then we find the system of integro-differential equations

47 [(ge 9)9“+A(9’7]* 'z[[ge*gjg—“‘ws‘;[g*j]fé‘fge-g I (829

N/ =Mv+l,. ‘o ///

e e e Wi

If we rewrite these equations in new independent variables

S N
S=s ., =g 5(8.29)

| they then assume the following form

f?g & :5"[(9&*9)%”4’”/94)] f’;‘U9° 9) +£§A’“’(9)]+&(gc~g)% (8.30)

~7'.~ -

. oy T

A(?)“/(Qe“ )“x"/”x [/,f/u/, /"/); %‘/3;”*‘) /‘Q/@.ﬂ,’)dnﬁ ~

- (8.31)
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‘ : “(“';"-)"u*{x‘, Hix) - ﬂiﬁ)f{d‘,n«/ 5"/;‘;/’1 /2' ”X/

‘ . (8.32)
.f;[x,r.l;}= (f(mln*)fﬁw —f@'ﬁk d_/ +d. /*.;- ;”KJ: o ( ‘ .

Here 6*‘(x) is an arbitrary differential function of x.

Finally let us proceed to integration of the energy equation (2.42).

We can first transform it into new independent variables :

e

R R TR set |
Cxl=x Pu™= gufee) O - (8.33)

{ and to the unknown functions.

B L ) Sy
Pu {:é ”~)= / Un (X, nu) ol Un (X, n,,) = U [, n) .

f-.—fv)'zk fy + 0N H+d7l‘“"H' é?w ,‘fﬂfuw
| e (5, rn) = 3? L) (o) K (ali= ~4”—ﬁ-“x~ o)

L TRy Y e (e, )

-

'(8.34)

where §.(x) is still an arbitrary function. It then assumes the following

form

- u Y i R (4B LG9y
_(; J,,fu %f—) L) h1+ L‘Q——M—% e H) =

| i R IPNNCL N
‘3"‘ Ue y oK fHw fw ?m/ {5' [99::, +(6*’£) ae 9“"’ 2“'{-) /_;:_{(9;.9‘).9—'%" ].,

.
ﬁak(xm*é” 9hﬂ)+kA e .,,«.12:/ "7-}

3.

(e

DT, SR

P ——
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* ! In the variables

a . py ) ‘ :
* - ) / - .
s o/ﬂv/uw U olz’  An= 1o (8.36)

this equation will be

‘SMUHBS (06, f;/ UCf"@L)@nuf.Z {qu Z.(Qe"g/ )é-/*
- (o ?s”)m[(ge 7% J+ 2 (P b=y (EL B+ 83
+(54)u¢ ()= 1G9 3 ]+ ;" Qu (e + & £ &8 '-&;W,m}

‘ Let us integrate Equation (8.37) by n, from n, to @ and use the asymptotic

. expressions’

o, 0, (HC—H//H i when #y—> o°

Then we find the 1ntegro—different1a1 equatlon of energy .

@
3 —H~+(6‘-1)t/e ?nu{”‘) Z (9@ @ﬂﬁ] ZQ“(‘%”*é@i)

-R T,Z,;,/Zr"“{; -0, [{H‘/’fe)ﬁf+ A[/—/)]+ d;*[(f/—l-lejas *08 A[H) ZS ‘38)’

L AOu (HH) RS 4’"

}

i  where

A(H)= /”[/'/e-/-/) bie o 1

.@ L
; ) {a‘ o L@/C’%)A(H){Qv o fl/)(c’ Vi )*5'2[ o/%c rw@/,)?,,

C’ps =
S .
O 4)5 8% (g~ 58 5 (9] )] oew |
g g, 5"l R
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Thus, we have obtained, instead of a system of differential equations

: T of a multi~component boundary layer with chemical reactions and ionization

" reactions (2.13) ~ (2.22), an equivalent system of integro-differential
equations (8.8), (8.19), (8.21), (8.28), (8.38).

§ 9. INTEGRAL KARMAN EXPRESSIONS FOR A MULTI~-COMPONENT
BOUNDARY LAYER WITH REACTIONS

_ If in Equations (8.8), (8.19), (8.21), (8.8), (8.38) we identify all
. functions 8(S) with thicknesses of the respective boundary layers and set
z = 0, we then obtain integral Karman expressions in terms of the variables

S n as an approximation of a boundary layer of finite thickness

1 ——U“" fé”(g)A*(u/; 522 4 %) #SBA) NS o
il ~ T (5,0 =di o'y "‘/a/+d"zﬁaA o)+ 0t 8L A /W;)—»J’(&e(f;)&%} |

(' tey g

|

{

@%2‘0 =5J’(5)Z; e E’%/ i r:)(?} Sy g ra)]w+

;“;t"wg,mwmw~w&1

x (9.1)

+o§ /2; F Lapads (- .sqc,;asa(cz)]wd? L i Ldyefie-g)- 5‘,/9(&6~¢'«)J%
i Car gl <$°)+5Lﬂf [M&A“"’(w)-%fc/o(wl ﬁ 1...’]&)7
;-9' (go) /éjdfgj+f‘asd(9)+é“(ge gw)'#w (/=% :
R f -5V L Zi Qv (i * S )w R gz;;’*g. -?z«-
; *&&’A*KH}M&% A fH}-* A‘H(He Hw)¢w+9osw -. :. L
vhere. e S
2Nu)= /u//—u)dn A(f)—// 4“/0/”— | |
NG / (e ) ticlre AT "//‘(e “';:eait/a’m' .
-«ft)(g)—~/(ge—-g)wdm 45 /[/e }u/a//y ‘//-/v«f/,., )

< *#00) oy Sy f
| */H} /[He H) wow A= //fﬂe_ LY )olre
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The expressions in (9.1) are integral Karman expressions for a multi-

component boundary layer with chemical reactions in the Dorodnitsyn - Ste-

fanov variables in Lees form. On the basis of these expressions we can

. develop the familiar approximate method for solving a multi-component bound-

ary layer with chemical reactions, i.e., the Karman - Pohlhausen method
(41419

. However,in the next section,we shall develop a method for solving

this problem based on use of the method of successive approximations.

§ 10. METHOD OF SUCCESSIVE APPROXIMATIONS FOR SOLVING
LAMINAR MULTI-COMPONENT BOUNDARY LAYER EQUATIONS WITH
CHEMICAL REACTIONS AND WITH IONIZATION REACTIONS

The problems formulated in sections 3, 4, 6, 7 for the theory of a
laminar multi-component boundary layer with chemical reactions and ioniza-
tion reactions are too complicated for obtaining an approximate and numerical

solution in the general case. In the past these problems were solved numeri~

~cally with a series of simplified assumptions, i.e., by the method of finite

differences. However, this method, used in the problems studied here, leads
to awkward computations that are created by the method itself rather than by
the physical essence of the problem. In this section we shall develop a )
method-df successive approximations (see § 1) for these problems. The ad-
vantage of this method consists of the simplicity for arriving at solutions
using an electronic computer in the general case and in the possibility of
obtaining approximate solutions (first and second approximations may be com-*f
puted analytically), the accuracy of which may be estimated by this same :
method using an electronic computer for computing the successive approxi-

mations. Let us proceed to a discussion of this method.

‘We can rewrité the system of integro-differentjal equations (8.8),

(10) The method of Karman -~ Pohlhausen has as yet not been employed
in the literature for solving equations of a multi-component boundary
layer. ' ; ‘ -
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S
!

. (8.19), (8.21), (8.28), (8.38) in concise form.

g;it} = ¢(~. @I”‘{; u) cl/-") c"/) /—.// ("={'.”) A/)

5%, +(5~1)ae S (——~-/ 2 5~ g )—-/— ;‘ Qu (e 5™ %).f..;

+RT ._z_. -1__
Ka /;%H; y Y4 Wi, nu e, .zy ., TN, H)

.

~ 0 = = 38 [(ce—) ¥ + & ()] + G*L( e-) 75 W‘ +9—3 ace)J?
: +0“/’1 Afw}+d“(ac-&)s”w (4.0, V) ' "
* * Prs - PY. 4+ 2. -*_7-.&‘
!._,‘z* /[[gg-g/ +A(9'/]"' [/C)e Q/ 934/9/ |
y jge=9) W o

where

| F= d’d”[[/u/?m/u/]t‘@d"[/z ) @5 + 55 Aﬂ&/]f‘{
+d’ 2¢5) A(g e 5/2-u) Wl et

CP gioi! ; {"}’] [‘g‘/ (Ge-C) - "“/C‘ (Ge- 9)]%4- m B"JCJA(C‘ AJA(Q)C‘]}e., (10 2)

[+ J*g [y A Sy § (o) citge-g) ] 55 * i [346j3546) *vaasA (q)]}f+ ;
:,+- 67,61 [g,/ 94(wz) 4y & A"’N{/ )]+é'f »yﬁe/gf‘?‘ @)= e

.,L,.. et S e

B
o=y a(ge— )]tfw-uaae%-é‘—- |

V’— (‘54():/ [(He‘H H +A(H)]€" +674 [(He-H u"'as A(H ]6'6 +a; (He"H )%fe"-r Cp 'e"G"
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' structure.

! Let us mention that all the functions f, \pi and ¥ have a mutually similar

v Let us integrate System (10.1) for the last time, respectively, with
respect to the variables n, Ny Ny eees Ty My from zero to the instantan-
eous values of these coordinates, we then find .
/ -Z
sn )
Ci~ C‘w_f (Pw/m—- ﬂ‘(gnL)JJ +[}55L(5m)+ G(sm)]& + @c[ ﬂ‘) wtf—t(ligsf;t)) J

H Hw ﬁl{SnH)d:,cTH—fBH(Sn~)+CH(SnH)5H 8H[$PIH)\PW0:(.

where’

8 (S "/ /L(“/Vv‘A(LL}]c” ‘dn“”wB.(ASn) /4{9)5’ fogn o
%,A}c(-" n) = /[{1 “/as * a.sAﬂc)]f "dﬂ S@ﬁ'nj “_/{/—uj R
’ (

-\ﬁl' S nwj= 72 S, ) = & a =~ G S, K
(/ / _Z:a(/) B‘/l ') 22—_: :/., ‘(‘5;/147 ; ].(I .}'
: 4 - L

7/

o »
329:(5,' w)= Q3 oy (5 m) (10.4) -
; ‘a,,‘aj{,.y LSy g (ee-ci)- i (Ge-cr) T+ g LSy Ay~ Gea Vylpe il
% ‘—J}/r-*/-m[.ﬁ/g(&c - - &/a(ge—g)]flﬁlnl
j .

(4

72 jm,q & Qa‘roduc‘/ I[m [3119(9"'9)‘*1‘3(9" 9)] [ 19%4(Q/~4/a354(9)]ji£(

[ - e e e e
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iy = 3 [sic,(qc-c‘) ~ iy G (Ge- G A Aun
ﬂ(s Hu) = ./[(He H)pw +A(H/]6"€ Jdm, .
' ¥1.9 -
B(s ) ==/[//-5/ us, ( '“) Z (ge o, ~ Z: Qk(yx,qfe

-/ o
@m,) RT L ST 6‘6“ pi e i .

J =+

fi-i C (s nu) = [ (He=H) o 4 2 A(H) ]a‘e“ozn,,

| D (s, nu) = J [_’/'/e-/—/){s'e'z(’lﬂif

System (10.3) represents a system of integro-differential equations. Now
let us select the functions §(S), 6;(S), ..., 8(S), SH(S); which were pre-
viously arbitrary, in such a manner that after substitution into the right-
hand sides of System (10.3) of the arbitrary and integrable functions u(s,
n), (Ci(s, ni) (i=1, ..., N), H(s, nH), which satisfy only the boundary
conditions on the wall and at infinity, we obtain from left to right: 1,
Ge—Cw (G4eey ~),  and He~-Hw, respectively. Then the function556 for the
specified functions u, Ci (i=1, ..., N), H which satisfy the boundary

' conditions will be found from solving the system of ordinary differential

bt

eﬁuations

L= A 5m) T [0 Bl +C 5o T D05 em T

é

HeHe = ﬂﬂ{szm}d;d;*BH(S‘”)‘/'CH(so"}J +/9,««/Soo)‘/”wf

Now the process of successive approximations will be constructed in

the following manner. From the practical data on the qualitative character
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......

" ' of the profiles of the unknown functions in the boundary layer let us select

' the zero approximation:

wlsm) =l n) | Gosm) <GS 1) (6doy ), H s ra)= HO (s )

' Then we solve the system of consistent ordinary differential equatioms (10.5)

with the initial equations(ll)

So)= GU(0)=... = Ip(0) =0y (0) =0 (10.6)

(1)(5 ) Q (S n) (éi=4,..., _/~/) l"/(/)° “4), and then the

| Then from (10.3) we find 4
in

* process is repeated until the functions U(S 2),G06,0) 5. (€4en, /V’}‘H(”s, 7)

. the physical variables are no longer near, respectively, to one another in

the above given algorithm

v . i) - () k ‘
4 B8%) c(s0) ,k,.z 2™ 15 L
‘.3‘&1.75 ( J‘“’)& [/’“’ #se) " f/“"(s TP 16 AP W WO A Ey

S Y

1d B¢ (S°°) G ($°°) X, 9 /s;aa) 4,
2 ds (‘;) [/5‘( Fsor” (sw)](f()a " o d‘”

| 4P (500

! + 2% ) _ Ge— Gw

; » 7 (k) (500 A, 55, 00) | )
) k) T

| K (5 00) kR _@Hr (59 ~H =Bl

! 2 ¢ tky . He-Hw =By rs o)

[ (d’f' ‘ (s (; #u (509 Hody = A (s 0)

; Equation con't,
| | L on next page

(a1 Let us note that this initial condition determines the only
finite solution to System (10.5) when 0 < x < X, where X depends on the

data in the problem,

<
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| ) s, n) N L A %5 n)
u s n)= 7 2 {ﬁ@.[ﬁ( Bn)- A (5 ) /"“’]*C Er- f

A% n) 2 K A (.m)
_;7(/‘1(5;00/ C(k)‘/g @}@v(ky * [’8 ((9)/4—/ _}f(k’fs c0) 9(/‘)5' 09)_79/ ,;(k/
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) /s___) 4] 7 oo
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i) )mf‘;;z (s,w))@/ W) [0 ts - 4—5&“—)5@‘ Qses ] oo 6“0t e

rJCI(

147

| - @0.7)
| +7?f (S/"“f') @%,%f% T“"fs,w) o ‘(con't.)
1‘—;‘— S e - . ks — e e ko e -
P A (S m«} 1k _ Hn (s nn) o R :
; k+l} Hwr -—[He Hw) ‘4’:,‘,(3 ,6 (s #i) “‘T"“““ﬂ_ﬂr T (s, 0o B (sev+
s,
S Ec;fk’(s ) = ”jav(——*'ﬂ w)]@) + [ (= e e
[ . Do ' e R
i J?H fs ) o K1 Tl g K '.F-.;
| ﬂ“““‘”nq 5 ,@a/s,é/_j w do IR |
4 } e _ i ; E N A~ “"‘("]'0.' 8)

. When xpv" # 0, the equations in (10.7) represent a system of consistent differ- .

ential Abel equations of the second kind, not integrable by quadratures.
In solving the problems in boundary layer theory on-an .impermeable wa}ll,

when xp‘; = 0, System (10.7) may be integrated. ' Here if we allow for the
conditions in (10.6), we find : ‘
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é:{()) W(n’l/g (S')P/S )/#[S/m) %/)(02/'9,( s Q,S”) o/s
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//(kl( 00) ‘41'/‘1 (S“y
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i G 0=t G 0 LA ey v

(/?)" - k1, S 2 Ho-tw-B [s' o)

() %v(:a/‘?/ (s)ds') [ ”fk,” 4/»(.2/ f.s‘)ds")c/s
# k) C’k’&', ) '4 (’

H

L e E - ,

‘ or in the physical variable x ( ds:/uwwa&z~‘dm)
1)
% wefr (xvdx')/% o f{, o e
26,09) (X, o) -
'y ( x)= /3(-'1") ‘T?TE)L('_——M * Jgrk/(x o) » _/B/x/ dm,
2 [Co-Cow=T Malod)] & o)t
{dfu (x)= %,0(2/‘9( (') de )/ 7R 2] 02 Jefo Vet W/’/'?/%”/ ’“") -

Bz, 00) ez o) ..., . (10.10) [48
. "‘p/(x) i) P T ATy (O 4
Tt k) i - z/
F 2L et~ By (% "")/wa Ue vt Jeloc! |
(x)~= %0( zf"/ eyl AU, ( / %‘” x) )
Y 0 _ Cy ¥ (x,00) ,
, - VH ,;z/‘//x,oo) . T

e e e
i -
)
|
i
I

If we substitute the solution to (10.9) into (10.8), we find an explicit

closed scheme for the method of successive approximations when w‘:v =0
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quk)(g 00) (s,00) %‘70/20/ //Q/S/]J#(k; W/?// (S S

s A% “
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i { I{SS /j‘) (k) )]+ a(k)(gl m)- N

| -?/a Cei'w 0o (”} ”

g gwc,)—(w Gms o Jerp (- »@/ Yishol's ’// = m(sz) 22 aﬂ,o{.?/ Y19 ds" )t

' ;%(s,09 :
/’/g If}lu) HW(S) [He-Hw) 7{?%‘7&%') H( )(’ )~ ﬂ:“’ sr:) Bits ) +[é‘f & nn)‘
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A ) '” R ”‘)f-x'ﬂ k) Jg /x,m) (k) R ”_ﬂ*f
W wu ‘O
‘+ch,n1 —%ﬁu e )}/"wfwda Lo %”z Jaz /f wz;oa “f&f ”/x”aéc

| ot Ll ST S
- ﬂ‘;ﬁ’((x';‘ Moy oo)}/wﬂ,u,,‘zz W/’/ 2/ ?(x)dw’)/ ¢ ﬂ[‘; (‘ £ ”wso( Y el
i ") ~Ho )= (He'/—/w) **aa@‘;)“ B," ) - —ﬁ%%’f-}’—@;“'( o)+

1 + LG - %'2,7(3‘;)@&,‘ “ ) Yot w/z/f{‘::)@ f S

A (z]o0).

HW—BH (x ”)z/u ”‘Mp (ﬂfﬁ”( (x")c/x")a’ac

A.é*‘ ‘
i After carrying out the necessary number. of iterations, determined by the /49
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' specified accuracy of the obtained solution, we can compute the local fric—

tion on the wall using (8.8)

v P Lt Durso o, 2k f AL +
‘Cy(.s')‘c".:maé,%ﬂ“ yia )}(S; JL“’)'-/VWJ”W“"“ {ﬂ(sw)d"(s)

+ [ (875)- 47w ,%)v‘ & A¥(uy) = A ;(7;%]513) * -A(u,lﬂ(g ‘,9]\/’ } (10. 13)

. where

AN = ofu (1-wjdn' A%(p)= [(?& -u?) d"‘ (10.14)

or in the physical variable x

C} quc.zk _
: '“h ' 'lu jz@@ﬂ;;déié;j Zcé( %ZZ (7)- Axfu/)Qﬁx mﬂjz ﬁh:zm (Lé}

9%, 09 L (10.15)
~ & ﬂ(xm)}g() [4- 47w ﬂ/x,w)](wt}}

i The diffusion fluxes of the componenté on the wall will be, according to

(8.12) and (8.19),

L el N
k. .71’/3 0)et= E10) { w7 (S o [ae C«w-T{s,oey]-i-[/:'/{s)(AfM) A(%W
E?A(a) A*{a) V.g,,w,]él (s)+@,-c,,, Na)ﬂf(s m)_]yxwé;@} (10.16)
N-_M(ité
7{ where |

At = [ (Ce-tucdne, ATV -/ (ﬁ,‘fe_ : ) j;; (10.17)
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,)f or in the physical variable x

A A [T I+ Lpuger (@760 =

‘“9? (0) At (2,09) 6% ()

%) e (x) = 18
i-—.A(Cz)ﬂ,(; ) @xA(a) L) mmoo)] (= <1018>,5

~ [oe-cau - 4% ,;z‘(w,] (7 s

i The diffusion fluxes of the elements on the wall, using their definitions
~in (2.23), will be

s = a0+ ], W (o), (10.19)

. The concentration gradients on the wall can be found from expressions in

i (8.21), which will be, after excluding Expressions § 61' using the Equations

i
in (10 7) »
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*  or in the physical variable x

K 9&'(-’(‘, 0_) w Ew U& 2° 9& RAEE, 0} “ @wa%"&
w'& /l/ &/x) ﬁm ﬂ‘(x o) J(ac) (&e—&w T(ot'/oc))
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: X, 09) -
:‘ [?F (gt (- g = TS ; CICRT
=i 8 ] (5T +/uw*c"oaw aw%F Gl |

. The enthalpy gradient (temperature) on the wall, using (8.38) and (10.7),
' will be |

- { 2. J / ¥ 9 ﬂa(_
t! [ f:nio . MH,( e - )—%”/%Q]_f Z @kw[yk,ﬁgf-am{ » g
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or in the variable x

, 4 Pl

_z[ i_gz,o) Py (93 g,)-f%(x 7. f@w(‘/,wg,—%)w.,
"‘ i (S) ' fiw [ Ue"(,'"‘A “(H) Ho B m].’ 1

+Rk7‘:¢ 2: Z; /r/';fwé/e'f«'z“ { o {09 O () [He w (6,09)

J=vetl

2 (% ;__Z |
+[ A (H) - A"(H) Q‘_(.L_..}]J'(m)-f [He -Hw -~ A(H)ﬂH(xoo)]A"VéﬁIO.ZB) :

CH) fw o Lt

In solving problems in boundary layer theory onm a nondisintegrating

(12)

wall, the solution to the problem is finished for computing the friction

and the heat flux toward the wall with a specified temperature Tw'

In solving problems in boundary layer theory over a thermochemically
disintegrating wall, the expression obtained for the diffusion fluxes of the

componehts and elements as well as the enthalpy gradient must be substituted

;'at each step of the iterations into the respective boundary conditions at

the disintegration front after which a system of nonlinear integral Volterra
equations is obtained for determining the concentrations and temperature on

the wall, as well as the mass transport velocity..

CONCLUSIONS

1. We have given a strict formulation of the problems in laminar bound- /51

ary layer theory with chemical reactions and ionization reactions both on
nondisintegrating and on tﬁermochemically disintegrating surfaces, made of

a material having a complex chemical composition. Special attention is de-
voted to a rational formulation of these problems. We have discussed in de-
tail the formulation of the problem on chemically balanced flows in boundary

layers for mixtures of gases w1th dlfferent diffusion properties of the com-

(

(12) If we do not examine the problem concerning the thermometer.

97



. i taining analytical approximate solutions to the problems in boundary layer

; ponents. We have shown that even in the case of a nondisintegrating surface,

i when no new elementary chemical composition is added to the flow, in a

" chemically balanced boundary layer for a mixture with different diffusion
properties of the components the elementary chemical composition at each

+ point of the boundary layer is not equal to the elementary composition in the
approaching flow. Therefore, computation of the transport coefficients

~ according to the previously given tabular data on the balanced'composition of

. tional errors.

2. We have given a new method for obtaining "exact" numerical solutions
. to arbitrary two-dimensional problems in boundary layer theory, based on use

. of the method of successive approximations. We have given a method for ob~-

]

: . 4
! theory, which are the first approximations of this method. The accuracy:, -~
' may be evaluated any time using the computations of the next approximations

" on an electronic computer. For a reasonable choice of the zero approxi-

‘ mation even the third approximation will give a high accuracy to the solution.
3. The proposed method may be expanded to solving nonstationary two-

~ dimensional, stationary three-dimensional and nonstationary three-dimensional

' problems in boundary layer theory. !
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